
Diss. ETH No. 22140

A Theory of Secure Communication

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich

(Dr. sc. ETH Zurich)

presented by

Björn Tackmann
Dipl. Math. Dipl. Inform., Universität Karlsruhe (TH)

born on April 13, 1980
citizen of the Federal Republic of Germany

accepted on the recommendation of

Prof. Dr. Ueli Maurer, examiner
Prof. Dr. Mihir Bellare, co-examiner
Prof. Dr. Adrian Perrig, co-examiner

2014

ii

Dedicated to my dear mother

RENATE TACKMANN

* 1948 † 2013

Alles im Leben hat seine Zeit.

iv

Acknowledgments

First and foremost, I would like to thank my advisor Ueli Maurer for giving me
the opportunity to do a PhD in his group, and for his continuous advice and
support as well as the numerous inspiring and joyful discussions we had. With
endless patience and confidence, and with his unique ability of explication,
he taught me to find and tackle fundamental research questions. I know
that I could not have made this unique experience elsewhere. Also beyond
research, Ueli’s door has always been open for me. I am particularly grateful
for his unconditional backing during the difficult period in my family, as well
as for his guidance and support in all professional matters. I was lucky to find
an advisor who not only guided me through my studies and research, but also
backed and encouraged me in all my endeavors, no matter if professional or
private, and has since become an influential person in my life.

I want to thank Mihir Bellare and Adrian Perrig for serving on my exam-
ination committee and for providing valuable feedback and being available
for fruitful discussions.

During my PhD studies, I had the fortunate opportunity to discuss and
work with several outstanding researchers and students. I especially want
to thank my co-authors Andreas Rüedlinger, Cristina Onete, Daniele Ven-
turi, Grégory Demay, Jonathan Katz, Juan Garay, Markulf Kohlweiss, Peter
Gaži, Sandro Coretti, and Vassilis Zikas. Additionally, I want to thank Anja
Lehmann, Cas Cremers, Christian Badertscher, Christian Matt, Christopher
Portmann, Daniel Jost, Dennis Hofheinz, Jörn Müller-Quade, Joël Alwen,
Kenny Paterson, Mario Strefler, Martin Hirt, Mihir Bellare, Phil Rogaway, Ran
Canetti, Simon Knellwolf, Stefano Tessaro, Steven Myers, and Thomas Holen-
stein for interesting discussions and/or valuable feedback they provided for
my work. I am particularly thankful to Christoph Lucas, who was my long-
term office mate and sparring partner and became a very dear friend of mine.
I would also like to thank our secretary Beate Bernhard who has supported
me in all administrative tasks, and Cristina and Gunnar who proof-read earlier
versions of my thesis and provided helpful feedback.

v

I would like to express my deep gratitude to my family for continuously
giving me love, encouragement, and support.

My life at ETH and more broadly in Zurich has been made enjoyable by
the many wonderful people I’ve met here. It is infeasible to list them all, but
besides my colleagues at ETH I’d like to thank Anja, Armin, Chrissy, Florian &
Carmen, Franziska, Raffi, Robin, Roger, Silvia & Igor, Simon, Stefan, Thomas,
Urs, and especially Elke for bringing sunshine to my life.

Finally, I would like to thank the Swiss National Science Foundation for
partially funding my position as a part of project no. 200020-132794.

vi

Abstract

Cryptographic schemes and protocols are essential tools for the protection of
communications and IT applications. One of their currently most widespread
uses is in securing the communication over networks of electronic devices,
primarily the Internet, where cryptographic protocols are employed in day-
to-day services such as online banking as well as for guaranteeing the privacy
of personal (electronic) communication.

Since the security of a cryptographic protocol or scheme, in contrast to
its correctness, cannot simply be demonstrated, the now widely accepted
paradigm is that one builds confidence in cryptographic protocols by provid-
ing a (mathematical) proof of their security. Such an approach first requires
one to define what it means for a cryptographic protocol to be secure. Then,
one specifies the assumptions that one is willing to make. This includes as-
sumptions about the resources available to the protocol like communication
channels or memory; it also comprises assumed restrictions of the attacker
such as its inability to access the protocol memory or to solve certain seem-
ingly difficult computational problems. Finally, one provides a formal proof
that the validity of the assumptions implies the security of the protocol.

The approach of proving the security of cryptographic schemes can be
traced back to Shannon’s 1949 work about one-time pad encryption. Yet,
his tailor-made and purely information-theoretic definition and proof do not
generalize to other types of schemes. In 1976, Diffie and Hellman introduced
a cryptographic (public-key) scheme whose security was explicitly based on
the conjectured hardness of a specific computational problem, but they did
not formally define or prove security. For the case of public-key encryption,
a security definition was introduced by Goldwasser and Micali in 1984. Even
today, the most widely used definitions in the context of secure communi-
cation follow the paradigm introduced in their work, which formalizes the
attacker’s inability to perform certain attacks on the scheme. This approach
has several drawbacks since it does not make the guarantees that a scheme
provides in a specific application explicit, and more importantly it does not

vii

support a modularization of schemes or proofs. Support for such a modular-
ization was then achieved by the general frameworks introduced by Canetti
and, independently, by Pfitzmann and Waidner in 2001. Since these models
are described as generalizations of earlier ones, they still carry legacy for-
malism inherited from the previous definitions, and additionally introduced
artifacts through design choices made during the generalization. In 2011,
Maurer and Renner proposed that instead of extending and generalizing ex-
isting definitions, which inherently leads to a more and more complex formal-
ism, a theory of cryptography should follow an axiomatic perspective. This
approach, in which one initially defines the considered concepts at an ab-
stract level and iteratively refines them whenever necessary, assures that the
obtained definitions are clean and simple, and exactly capture the desired
concepts.

This thesis describes a coherent theory of secure communication follow-
ing the described axiomatic approach. The first contribution is the specifi-
cation of a formal framework that instantiates the concepts of abstract and
constructive cryptography (Maurer and Renner, ICS 2011) and in which se-
curity statements about concrete cryptographic protocols can be phrased and
proven. The second contribution is the application of this framework in the
setting of secure communication. This comprises the proof of well-known
protocols with respect to the new definitions, the comparison to several exist-
ing security notions from the literature, and the analysis of a new unilateral
key-establishment protocol. The third contribution is a modular proof of the
“record layer” of the Transport Layer Security (TLS) protocol, the currently
most widely deployed cryptographic protocol on the Internet. The contribu-
tions are described in more detail in the following paragraphs.

A framework for constructive cryptography. The most fundamental ques-
tion for a security definition is what it actually means for a protocol to be
secure. The constructive cryptography paradigm follows the idea that the re-
quirements are ultimately mandated by the application: given the assumed
resources that are available to the protocol, such as an insecure communica-
tion network and a public-key infrastructure, the goal of a cryptographic pro-
tocol is to construct, in a well-defined sense, a desired resource that the parties
executing the protocol wish to obtain, such as a secure end-to-end commu-
nication channel. One important property of such construction statements is
that they can be chained: a constructed resource can be used as an assumed
resource in a subsequent construction step. This allows to build complex pro-
tocols as a sequence of simple construction steps, which results in a modular
proof (since each construction statement can be proven in isolation) and a
modular structure (because each construction step can be replaced individu-

viii

ally by an alternative one or re-used in other protocols).
While the construction concept is universal and independent of cryptog-

raphy, the definition of what it means for a protocol to actually achieve a con-
struction is specific to each considered setting, that is, the number and type
of parties that are involved. Following the work of Maurer and Renner, the
setting of secure communication—which involves two or more honest par-
ties and one potential attacker that attempts to eavesdrop on or to disturb
the communication—results in a so-called simulation-based security defini-
tion with a single simulator. The concept of a simulator, albeit in a slightly
different formal sense, was introduced by Goldwasser, Micali, and Rackoff in
1985 and also appears as a crucial ingredient in the general frameworks of
Canetti and of Pfitzmann and Waidner.

This thesis instantiates the concepts of abstract and constructive cryptog-
raphy to allow for a formal analysis of concrete cryptographic protocols. The
abstract system concept used by Maurer and Renner to describe the construc-
tion notion is formalized and instantiated in terms of discrete systems, i.e.,
systems that communicate by sending and receiving messages and which are
described by their input/output behavior. We then define a construction no-
tion based on Maurer’s abstract reduction theory and show that the notion
is indeed composable. Additionally, we show how parametrized construction
statements are defined. These statements model settings where the security
bounds that can be shown for a protocol depend on parameters which might
be static (like the key length used in an encryption scheme) or even a pri-
ori unbounded and only determined while the analyzed protocol is used (like
the length or number of encrypted messages). Overall, we develop a formal
framework in which a broad class of cryptographic protocols can be analyzed,
which is precisely defined and inherits the main advantages of constructive
cryptography like the clear semantics of the security statements and the in-
herent modularity.

Constructing resources for secure communication. The capability of two
or more parties to communicate can be formalized as a channel that is avail-
able to these parties. In the setting of secure communication where a potential
attacker may attempt to eavesdrop or to disturb the communication, one can
describe different levels of security by explicitly specifying to which extent the
attacker can access the communication. This results in resources such as inse-
cure channels where the attacker can completely control the communication,
authenticated channels where only the legitimate sender can send messages
but the attacker can still eavesdrop on the communication, and secure chan-
nels in which both the authenticity and the confidentiality of the communica-
tion are guaranteed. A further important type of resource models the concept

ix

of shared (secret) randomness such as different types of cryptographic keys
with specific security properties.

Each of the described resources can appear either as an assumed or as
a constructed resource in a construction statement. Assumed resources can
either be assumed to exist in the real world (this is the case for insecure
communication channels, which model communication via the Internet), or
they can be constructed by other protocols from other assumed resources; the
composability of constructions guarantees that using constructed resources in
a subsequent construction is sound. For example, a message authentication
code (MAC) constructs an authenticated channel from an insecure channel
and a shared cryptographic key, and a symmetric encryption scheme con-
structs a fully secure channel from an additional cryptographic key and an
authenticated channel, which could be the one constructed by the MAC. A
key-establishment protocol, such as Diffie-Hellman, constructs from a pair of
authenticated channels a cryptographic key.

The thesis formalizes resources such as the ones listed above and proves
the validity of various construction steps. Beyond the constructions achieved
by MACs and symmetric encryption, we show how one models anonymity fol-
lowing the constructive paradigm and prove that a key-private (and robust)
public-key encryption scheme constructs a receiver-anonymous confidential
channel from appropriate resources. Finally, we describe a unilateral key-
establishment protocol and prove that it constructs a unilaterally authenti-
cated key from insecure and authenticated communication channels. Beyond
proving concrete schemes, we also show which construction statements are
implied by several existing security notions from the literature.

A constructive perspective on the TLS record-layer protocol. Besides pro-
viding sound definitions and designing secure cryptographic protocols, a fur-
ther task of practice-oriented cryptography is to analyze the security of ex-
isting cryptographic protocols. This task is particularly difficult if the consid-
ered protocol has not been designed with provable security in mind. Complex
cryptographic protocols (like for example SSL/TLS, IPsec, or ssh) are often
designed in a somewhat ad-hoc fashion, without a security proof. In fact, a
substantial number of practical cryptographic protocols have been broken in
the past, including all the three protocols mentioned above. The exploited
vulnerabilities are rarely caused by a failure of the underlying primitives, but
mostly occur because the different elements of the protocols are in subtle
ways not compatible.

The TLS protocol is the most widely deployed cryptographic protocol on
the Internet. Initially developed by Netscape as Secure Socket Layer (SSL)
for securing the transmission between web servers and web browsers, it has

x

been adopted to many other scenarios such as securing connections to mail,
directory, or database servers, and even some virtual private networks are
based on (parts of) the protocol.

After various vulnerabilities have been found in the protocol and patched
in subsequent releases, the most recent version TLS 1.2 appears to achieve a
reasonable level of security. Indeed, a long line of papers in the cryptographic
literature focuses on proving the security of (parts of) the TLS protocol. In
this thesis, we prove the security of the record layer of the TLS protocol as
a construction statement. The task of this sub-protocol is to actually protect
payload messages after a cryptographic key has been established in the so-
called handshake, another sub-protocol. Our result shows that the use of the
particular schemes applied in TLS 1.2 is sound. The composability of the
security definition ensures that the analysis of the record-layer protocol can
be combined with an analogous analysis of the handshake protocol.

xi

xii

Zusammenfassung

Kryptographische Verfahren und Protokolle sind zentrale Werkzeuge für den
Schutz von Kommunikation und IT-Anwendungen. Eine der gebräuchlichsten
Verwendungen ist der Schutz der Kommunikation in Netzwerken elektroni-
scher Geräte, insbesondere dem Internet, wo kryptographische Protokolle es-
sentiell sind für die Sicherheit verbreiteter Anwendungen wie Online Banking
ebenso wie für den Schutz von privater Kommunikation.

Da die Sicherheit eines kryptographischen Protokolls, im Gegensatz zu sei-
ner Funktionalität, nicht einfach demonstriert werden kann, hat sich die An-
sicht durchgesetzt, dass das Vertrauen in kryptographische Protokolle durch
einen (mathematischen) Beweis ihrer Sicherheit gestützt werden soll. Dieser
Ansatz erfordert zunächst die Entwicklung einer formalen Definition für die
Sicherheit eines Protokolls. Daraufhin werden die Annahmen, unter denen
das Protokoll sicher sein soll, spezifiziert. Diese Annahmen umfassen zum
Einen die Ressourcen, die dem Protokoll zur Verfügung stehen, etwa Kom-
munikationskanäle oder Speicher. Zum Anderen enthalten sie vermutete Be-
schränkungen möglicher Angreifer, etwa dass diese keinen Zugriff auf den
Speicher des Protokolls haben, oder dass sie ausserstande sind, gewisse als
schwierig erachtete mathematische Probleme zu lösen. Schlussendlich wird
gezeigt, dass die Sicherheit des Protokolls aus der Gültigkeit der Annahmen
folgt.

Der Ansatz, die Sicherheit kryptographischer Verfahren zu beweisen, geht
zurück auf Shannons Arbeit aus dem Jahr 1949 über die One-Time-Pad-Ver-
schlüsselung. Seine Definition und sein Beweis sind jedoch spezifisch für das
betrachtete Verfahren und lassen sich nicht direkt auf andere Fälle übertra-
gen. Im Jahr 1976 schlugen Diffie und Hellman ein asymmetrisches krypto-
graphisches Verfahren vor, das explizit auf der vermuteten Schwierigkeit ei-
nes bestimmten mathematischen Problems beruht. Ihre Arbeit enthält jedoch
keine formale Definition für die Sicherheit des Verfahrens. Für den Fall der
asymmetrischen Verschlüsselung wurde eine solche Definition im Jahr 1984
von Goldwasser und Micali vorgeschlagen. Viele der heute verbreiteten Defi-

xiii

nitionen im Bereich der Kommunikationssicherheit basieren auf ihrem Ansatz,
der die Unmöglichkeit bestimmter Klassen von Angriffen auf das Verfahren
formalisiert. Dieser Ansatz hat einige Nachteile, weil er die Garantien, die ein
Verfahren in einer bestimmten Anwendung erreicht, nicht explizit macht. Ins-
besondere ermöglicht er nicht die Modularisierung komplexer Verfahren oder
ihrer Beweise. Eine solche Modularisierung wird von den allgemeinen Model-
len unterstützt, die Canetti und unabhängig Pfitzmann und Waidner im Jahr
2001 einführten. Da diese Modelle jedoch als Verallgemeinerungen aus den
vorhergehenden Definitionen hervorgegingen, basieren sie noch immer auf
einem ähnlichen Formalismus und fügten zudem im Zuge der Verallgemeine-
rung weitere Artefakte hinzu. Im Jahr 2011 schlugen Maurer und Renner vor,
dass eine Theorie der Kryptographie einem axiomatischen Ansatz folgen soll-
te, anstelle existierende Definitionen zu erweitern und zu verallgemeinern.
Dieser Ansatz, in dem man zu Beginn die betrachteten Konzepte auf einem
abstrakten Niveau beschreibt und dann iterativ verfeinert, stellt sicher, dass
die daraus hervorgehenden Definitionen sauber und einfach sind, und genau
die gewünschten Konzepte beschreiben.

Diese Dissertation folgt dem beschriebenen axiomatischen Ansatz und be-
schreibt eine kohärente Theorie der Kommunikationssicherheit. Der erste Bei-
trag ist die Spezifikation eines formalen Modells, das den Konzepten der ab-
strakten und konstruktiven Kryptographie (Maurer und Renner, ICS 2011)
folgt, und in dem Aussagen über die Sicherheit konkreter kryptographischer
Protokolle beschrieben und bewiesen werden können. Der zweite Beitrag ist
die Anwendung dieses Modells auf den Bereich der Kommunikationssicher-
heit. Dies umfasst den Beweis verbreiteter Protokolle relativ zu den neuen
Definitionen, den Vergleich mit verschiedenen existierenden Definitionen aus
der Literatur, und die Analyse eines neuen einseitig authentifizierten Schlüs-
selaustauschprotokolls. Der dritte Beitrag ist ein modularer Beweis des

”
Re-

cord Layer“-Teilprotokolls des
”
Transport Layer Security (TLS)“-Protokolls,

des momentan im Internet am häufigsten verwendeten kryptographischen
Protokolls. Die Beiträge werden in den folgenden Absätzen genauer beschrie-
ben.

Ein Modell für konstruktive Kryptographie. Die grundlegende Frage für
eine Sicherheitsdefinition ist, was Sicherheit eines Protokolls genau bedeu-
tet. Das Paradigma der konstruktiven Kryptographie folgt der Idee, dass die
Anforderungen von der Anwendung vorgegeben werden: gegeben die an-
genommenen Ressourcen, die dem Protokoll zur Verfügung stehen (wie ein
unsicheres Kommunikationsnetzwerk und eine Public-Key Infrastruktur), ist
das Ziel eines kryptographischen Protokolls, eine gewünschte Ressource (wie
einen sicheren Ende-zu-Ende Kommunikationskanal) in einem wohldefinier-

xiv

ten Sinn zu konstruieren. Eine wichtige Eigenschaft solcher Konstruktionsaus-
sagen ist, dass sie verkettet werden können: Eine konstruierte Ressource kann
as angenommene Ressource in einem folgenden Konstruktionsschritt verwen-
det werden. Diese Struktur ermöglicht den Entwurf komplexer Protokolle als
eine Folge einfacher Konstruktionsschritte, was sowohl in einem modularen
Beweis (weil jede Konstruktionsaussage einzeln bewiesen werden kann) als
auch in einer modularen Protokollstruktur (weil jeder Konstruktionsschritt
einzeln durch einen anderen Schritt ersetzt oder in anderen Protokollen ver-
wendet werden kann) resultiert.

Während das Konzept der Konstruktionsaussagen universell und unabhän-
gig von der Anwendung in der Kryptographie ist, ist die genaue Instantiierung
spezifisch für den betrachteten Anwendungsfall, genauer gesagt die Anzahl
und die Art der involvierten Parteien. Der Anwendungsfall der Kommunika-
tionssicherheit umfasst zwei oder mehr ehrliche Parteien sowie möglicher-
weise einen Angreifer, der versucht, die Kommunikation zu belauschen oder
zu stören. Nach Maurer und Renner führt dieser Anwendungsfall zu einer
sogenannten simulationsbasierten Definition mit einem einzelnen Simulator.
Das Konzept des Simulators, obschon in einer leicht anderen Formalisierung,
wurde im Jahr 1985 von Goldwasser, Micali und Rackoff eingeführt und er-
scheint auch als wichtiger Teil der allgemeinen Modelle von Canetti und von
Pfitzmann und Waidner.

Diese Dissertation instiantiiert die Konzepte der abstrakten und konstruk-
tiven Kryptographie, um die formale Analyse konkreter kryptographischer
Protokolle zu ermöglichen. Das Konzept der abstrakten Systeme, das von
Maurer und Renner zur Beschreibung des Konstruktionsbegriffs verwendet
wurde, wird formalisiert und im Sinne von diskreten Systemen, also Syste-
men, die durch das Senden und Empfangen von Nachrichten kommunizie-
ren, instantiiert. Dann beschreiben wir einen Konstruktionsbegriff basierend
auf Maurers abstrakter Reduktionstheorie und zeigen dass diese Konstruktio-
nen tatsächlich verkettet werden können. Zudem zeigen wir eine Erweiterung
des Konstruktionsbegriffs auf parametrisierte Aussagen. Solche Aussagen mo-
dellieren Situationen in denen die Schranken, die für ein Protokoll gezeigt
werden können, von Parametern abhängen die statisch sein können (wie die
Länge der Schlüssel, die in einem Verschlüsselungsverfahren verwendet wer-
den), oder zunächst unbeschränkt und abhängig von der konkreten Verwen-
dung des Verfahrens (wie die Länge oder Anzahl der verschlüsselten Nach-
richten). Insgesamt entwickeln wir ein formales Modell, in dem eine grosse
Klasse kryptographischer Protokolle analysiert werden kann. Das Modell ist
präzise definiert und hat die Vorteile konstruktiver Kryptographie wie die kla-
re Semantik der Sicherheitsaussagen und die inhärente Modularität.

xv

Konstruktion von Ressourcen für Kommunikationssicherheit. Die Fähig-
keit von zwei oder mehr Parteien zu kommunizieren kann als ein Kanal, der
den Parteien zur Verfügung steht, formalisiert werden. Im Anwendungsfall
der Kommunikationssicherheit, in der ein potenzieller Angreifer möglicher-
weise versucht die Kommunikation zu belauschen oder zu stören, können
verschiedene Sicherheitsniveaus beschrieben werden indem der mögliche Zu-
griff des Angreifers auf die Kommunikation explizit spezifiziert wird. Dieses
Vorgehen resultiert in Ressourcen wie unsicheren Kanälen, bei denen der An-
greifer die Kommunikation vollständig kontrolliert, authentifizierten Kanälen,
bei denen nur der legitime Sender Nachrichten senden kann, es dem Angrei-
fer jedoch immer noch möglich ist, die Kommunikation zu belauschen, oder
sicheren Kanälen in denen sowohl die Authentizität als auch die Geheimhal-
tung der Nachrichten garantiert wird. Eine weitere wichtige Art von Ressour-
cen modelliert das Konzept von gemeinsamen (geheimen) Zufallswerten wie
unterschiedlichen Arten kryptographischer Schlüssel mit spezifischen Sicher-
heitseigenschaften.

Jede der beschriebenen Ressourcen kann entweder als eine angenommene
oder als eine konstruierte Ressource in einer Konstruktionsaussage erschei-
nen. Angenommene Ressourcen können entweder als in der realen Welt exis-
tierend angenommen werden (dies ist der Fall für unsichere Kommunikati-
onskanäle, die die Kommunikation über das Internet modellieren), oder sie
können von anderen Protokollen von weiteren Ressourcen konstruiert wer-
den. Die Möglichkeit der Verkettung von Konstruktionsaussagen garantiert,
dass die Verwendung von konstruierten Ressourcen in folgenden Konstruk-
tionsaussagen möglich ist. Zum Beispiel konstruiert ein Nachrichtenauthen-
tifizierungscode (MAC) einen authentifizierten Kanal aus einem unsicheren
Kanal und einem gemeinsamen kryptographischen Schlüssel. Ein (symmetri-
sches) Verschlüsselungsverfahren konstruiert einen sicheren Kanal aus einem
weiteren gemeinsamen Schlüssel und einem authentifizierten Kanal, der zum
Beispiel der durch den MAC konstruierte Kanal sein könnte. Ein Schlüsselaus-
tauschprotokoll, etwa Diffie-Hellman, konstruiert aus einem Paar authentifi-
zierter Kanäle einen kryptographischen Schlüssel.

Diese Dissertation formalisiert Ressourcen wie die oben beschriebenen
und beweist die Gültigkeit verschiedener Konstruktionsaussagen. Ausser den
Aussagen für MACs und symmetrische Verschlüsselung zeigen wir auch, wie
Anonymität im Sinne des konstruktiven Paradigmas modelliert wird, und be-
weisen, dass eine bestimmte Art von asymmetrischen Verschlüsselungsver-
fahren einen geheimen Kanal, der zudem die Anonymität des Empfängers
garantiert, aus passenden Ressourcen konstruiert. Zuletzt beschreiben wir ein
einseitig authentifiziertes Schlüsselaustauschprotokoll und beweisen, dass es
einen einseitig authentifizierten Schlüssel aus einem unsicheren und einem

xvi

authentifizierten Schlüssel konstruiert. Ausser dem Beweis konkreter Verfah-
ren zeigen wir auch die Beziehung unserer Definitionen zu verschiedenen
existierenden Definitionen aus der Literatur und beschreiben, welche Kon-
struktionsaussagen von diesen Definitionen impliziert werden.

Eine konstruktive Analyse des TLS-”Record Layer“-Teilprotokolls. Aus-
ser der Entwicklung von Sicherheitsdefinitionen und dem Entwurf neuer si-
cherer kryptographischer Protokolle ist eine weitere Aufgabe praxisorientier-
ter Kryptographie die Analyse der Sicherheit von existierenden kryptographi-
schen Protokollen. Diese Aufgabe ist besonders schwierig, wenn die betrach-
teten Protokolle nicht mit Blick auf beweisbare Sicherheit entworfen wur-
de. Komplexe kryptographische Protokolle (wie etwa SSL/TLS, IPsec oder
ssh) werden häufig inkonsistent und ohne einen Sicherheitsbeweis entwi-
ckelt. Tatsächlich wurde ein beträchtlicher Anteil verbreiteter kryptographi-
scher Protokolle in der Vergangenheit gebrochen, inklusive aller drei oben
genannter Protokolle. Die Angriffe zielen selten auf das Versagen zugrunde-
liegender kryptographischer Primitiven, sondern treten meistens auf, weil ver-
schiedene Elemente der Protokolle auf subtile Art inkompatibel sind.

Das TLS-Protokoll ist das am weitesten verbreitete kryptographische Pro-
tokoll im Internet. Es wurde ursprünglich von Netscape als

”
Secure Socket

Layer (SSL)“ für die Absicherung der Datenübertragung zwischen Web-Ser-
vern und Web-Browsern entwickelt, wurde aber mittlerweile auf weitere An-
wendungsfälle wie die Absicherung der Verbindungen zu Mail-Servern, Ver-
zeichnisdiensten oder Datenbanken. Auch einige virtuelle private Netzwerke
(VPN) basieren auf Teilen des Protokolls.

Nachdem mehrere Angriffspunkte im Protokoll gefunden und in folgen-
den Versionen behoben wurden, scheint die aktuelle Protokollversion TLS 1.2
ein angemessenes Sicherheitsniveau zu erreichen. Eine lange Folge von Arbei-
ten in der kryptographischen Literatur befasst sich mit dem Beweis von Teilen
des TLS-Protokolls. In dieser Arbeit beweisen wir die Sicherheit des

”
Record

Layer“-Teilprotokolls von TLS als Konstruktionsaussage. Dieses Teilprotokoll
hat die Aufgabe, die übertragenen Anwendungsdaten zu schützen, nachdem
ein gemeinsamer geheimer Schlüssel von einem anderen Teilprotokoll aus-
gehandelt wurde. Der Beweis zeigt, dass die Verwendung der Verfahren in
TLS 1.2 tatsächlich sicher ist. Die Möglichkeit zur Verkettung der Sicherheits-
definitionen stellt sicher, dass diese Analyse des Teilprotokolls mit einer ent-
sprechenden Analyse des vorhergehenden Teilprotokolls kombiniert werden
kann.

xvii

xviii

Contents

1 Introduction 1
1.1 A Framework for Constructive Cryptography 3

1.1.1 The Construction Paradigm 3
1.1.2 Abstract Cryptography: The Axiomatic Formalization . . 4
1.1.3 Constructions for Secure Communication 6
1.1.4 Discrete Systems and Reductions 9
1.1.5 Related Work on Paradigms for Defining Security 11
1.1.6 Related Work on Models of Discrete Systems 14

1.2 Constructing Resources for Secure Communication 18
1.2.1 Secure Communication Between Two Parties 19
1.2.2 Receiver-Anonymous Communication 26
1.2.3 Unilaterally Authenticated Key Establishment 29

1.3 A Constructive Perspective on the TLS Record Layer 33
1.3.1 The TLS Protocol . 33
1.3.2 Viewing the Record Layer Constructively 34
1.3.3 Related Work . 35

2 Preliminaries 37
2.1 Notation . 37

2.1.1 General Notation . 37
2.1.2 Sequences and Tuples 38

2.2 Abstract Reduction Theory . 40
2.3 Random Systems . 44
2.4 Cryptographic Schemes and Security Properties 50

2.4.1 Game-based Definitions 50
2.4.2 Message Authentication Codes 51
2.4.3 Symmetric Encryption 53
2.4.4 Public-Key Encryption 56
2.4.5 Key-Encapsulation Mechanisms 59

xix

2.4.6 Signatures . 61

3 A Framework for Constructive Cryptography 63
3.1 The Construction Concept . 64
3.2 Abstract Systems . 65

3.2.1 The Algebra of Abstract Systems 66
3.2.2 The Cryptographic Algebra 69
3.2.3 Instantiating the Operations of the Cryptographic Algebra 72

3.3 The Construction Notion . 76
3.3.1 A Distinction Problem on Resources 77
3.3.2 The Notion of Construction 77
3.3.3 Parametrized Statements 83

3.4 Discrete Systems . 84
3.4.1 The Algebra of Monotone Discrete Systems 85
3.4.2 Parametrized Statements and Uniformity 92
3.4.3 Discrete Games and Reductions 94
3.4.4 Specification of Discrete Systems 95

4 Resources for Secure Communication 99
4.1 Communication Channels . 100

4.1.1 Formal Type and Availability Condition 100
4.1.2 Insecure Channels . 101
4.1.3 Authenticated Channels 102
4.1.4 Confidential Channels 104
4.1.5 Secure Channels . 106
4.1.6 Parametrized Channels 108

4.2 Keys and Shared-Randomness Resources 108
4.2.1 General Shared-Randomness Resources 109
4.2.2 Shared Secret Keys . 110
4.2.3 Parametrized Randomness Resources 111

4.3 Message Authentication . 112
4.3.1 Construction Based on a Shared URF 113
4.3.2 Construction Based on Weakly Unforgeable MACs 117
4.3.3 Constructing Ordered Authenticated Channels 120

4.4 Symmetric Encryption . 121
4.4.1 The One-Time Pad and Stream Ciphers 121
4.4.2 CBC-Mode Encryption 128
4.4.3 Relation to Previous Security Notions 130

4.5 Combining Encryption and Authentication 140
4.5.1 Encrypt-then-Authenticate 140
4.5.2 Authenticate-then-Encrypt 141

xx

4.5.3 Discussion . 143
4.6 Receiver-Anonymous Communication 144

4.6.1 Resources for Receiver-Anonymous Communication . . . 144
4.6.2 Generic Construction using Public-Key Encryption 148
4.6.3 Achieving Confidential Receiver-Anonymous Communi-

cation . 149
4.7 Unilateral Key Establishment 154

4.7.1 Constructing a Unilateral Key 155
4.7.2 Constructing the Authenticated Channel 157
4.7.3 Authenticating a Unilateral Key 163

5 The TLS Record Layer 167
5.1 Encryption . 168

5.1.1 Cipher Suites Based on Stream Ciphers 168
5.1.2 Cipher Suites Based on CBC-Mode Encryption 172

5.2 Padding and Authentication . 178
5.2.1 Construction Based on the XOR-Malleable Channel . . . 179
5.2.2 Construction Based on the Block-Malleable Channel . . 181

6 Conclusion 185

xxi

xxii

Chapter 1

Introduction

One of the most important and widely used applications of cryptographic
techniques is the establishment of secure communication channels between
two entities (e.g., a client and a server); many applications such as online
banking, electronic mail, or remote file access require such a secure channel
between the involved computers. Here, the term secure means that the com-
munication does not cause harmful information to be leaked, and that the
received messages originate from the assumed sender and are unmodified. In
practice, however, the existing communication channels (such as communica-
tion over the Internet) are insecure and provide neither of these guarantees.
Cryptographic schemes and protocols can be used to still achieve secure com-
munication in this scenario.

The security of a protocol cannot be observed directly, because this would
mean observing the absence of vulnerabilities to attacks. Even more, protocols
need to be resilient against any type of attack, even those that are currently
unknown and may only be discovered in the future. A key goal of research in
cryptography is hence to prove the security of cryptographic protocols. This
requires one to first provide a precise definition of what it means for a given
protocol to be secure, then to identify and formalize the assumptions under
which the protocol achieves the specified goal, and third to provide a formal
proof that the validity of the assumptions implies the security of the protocol.

The described approach is surprisingly difficult to implement. One rea-
son is that it is not even clear what “security” of a protocol means. An
early and still widely used approach is to explicitly formalize classes of poten-
tial attacks on cryptographic schemes, and then prove the impossibility—or
infeasibility—of these attacks. Yet, it is usually not clear whether a system
composed of several cryptographic schemes, each with an individual attack-

1

2 CHAPTER 1. INTRODUCTION

based security proof, is secure for an overall attack-based security definition.
In other words, these security definitions often do not compose in a mean-
ingful way, impeding a modular design of security protocols. Another reason
is that the capabilities of the adversary or attacker have to be specified in a
way such that, on the one hand, the definitions are not overly strict and ex-
clude schemes unnecessarily, but on the other hand, the model still captures
all attacks possible in the real world. As most practical cryptographic schemes
are secure only in a computational sense and could be broken by an attacker
with unlimited computing power, security models must allow for an inter-
pretation that reflects statements about computationally bounded attackers,
which is usually achieved by modeling all entities such as the protocol and the
attacker as Turing machines that run in polynomial time. Besides the limited
applicability of asymptotic statements to real-world settings, a major criticism
to this approach is that papers based on such models are generally not for-
mulated in the “low-level” Turing machine formalism in which the models
are specified. The papers often operate in a pseudo-code-type language with-
out even specifying the exact objects, i.e. Turing machines, they consider and
(claim to) prove statements about. Additionally, the environment in which
cryptographic protocols are deployed is often complex and consists of mul-
tiple parties that interact in a distributed setting. A formal security model
must be able to capture such interactions, while simultaneously allowing for
a computational interpretation, and at the same time being simple enough
to allow for comprehensible proofs. To date, no existing model satisfies all
above requirements.

This thesis aims at filling the described gap. The first contribution is the
specification of a formal framework in which security statements about cryp-
tographic protocols can be precisely phrased and proven. The second contri-
bution is the formalization of concrete security definitions and the analysis
of protocols within the proposed framework. This includes the proof of sev-
eral widely used schemes, a comparison of the obtained security definitions
to several existing ones from the literature, and a new key-establishment pro-
tocol for the “unilateral” client-server scenario. The third contribution is the
analysis of the “record layer” sub-protocol of TLS, the currently most widely
used cryptographic protocol in the Internet.

Outline. The introduction begins in Section 1.1 with a high-level descrip-
tion of the formal framework. We describe the paradigm of constructive cryp-
tography and sketch how this paradigm is instantiated for settings with a
single external attacker; we then explain how we formalize cryptographic
schemes and their applications. We discuss related work both with respect to
other paradigms for security definitions (such as game-based definitions) in

1.1. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY 3

Section 1.1.5 and with respect to other formal models for the instantiations
(such as Turing machines or automata) in Section 1.1.6. This section of the
introduction corresponds to Chapter 3 of the thesis.

In Section 1.2, we describe how the described framework is applied in
the area of secure communication. We briefly discuss the security statements
that are proven in Chapter 4, which are in the context of encryption and
authentication (Section 1.2.1), anonymous communication (Section 1.2.2),
and unilaterally authenticated key establishment (Section 1.2.3). The related
literature for this part of the thesis is discussed in the respective sub-sections.

In Section 1.3, we describe how the TLS record-layer protocol can be an-
alyzed from a constructive perspective. We also relate our results to other
results in the literature. This section of the introduction corresponds to Chap-
ter 5 of the thesis.

1.1 A Framework for Constructive Cryptography

The framework introduced in Chapter 3 follows the paradigm of constructive
cryptography, which was introduced by Maurer and Renner [MR11]. Later,
Maurer [Mau11] has exemplified the application of the paradigm using the
one-time pad. These works, however, did not describe a formal framework
in which concrete protocols can be formally described and proven. Indeed,
Chapter 3 of the thesis can be viewed as providing a formal framework that
instantiates the concepts described by Maurer and Renner [MR11, Mau11].
This section contains a high-level overview of the concepts and this frame-
work.

1.1.1 The Construction Paradigm

A central and well-known paradigm in constructive disciplines is to construct
a complex system from simpler component systems or modules, which each
may consist of yet simpler component systems, and so on. The TCP/IP pro-
tocol stack, for instance, can be interpreted in this respect. The components
are communication resources, starting from different types of physical con-
nections, and resulting in a world-wide communication network. The me-
dia access layer (with protocols like Ethernet, Token Ring, or PPP) constructs
from a physical channel a point-to-point communication channel between two
nodes. The IP layer constructs from an incomplete network of point-to-point
channels a communication network where any pair of parties can communi-
cate via sending messages unreliably. The TCP layer then constructs from this
resource a reliable communication network for bit streams. One main advan-

4 CHAPTER 1. INTRODUCTION

tage of this approach is modularity, which ensures that each sub-protocol can
be designed and analyzed independently from the other sub-protocols.

Constructive cryptography as proposed by Maurer and Renner [MR11,
Mau11] applies the described paradigm in cryptography. The components
of interest are the resources that are available to the parties that participate in
the setting where the protocol is used. The resources we consider in this work
include different types of communication channels and shared secret keys, but
more generally any kind of “infrastructure” that can be used by protocols, like
memory or computation, is considered a resource.

The security of a cryptographic protocol is then defined by explicitly mod-
eling both the application in which the protocol is supposed to be used and the
desired guarantees the protocol is supposed to achieve in terms of resources
that are available to the parties. The goal of a cryptographic protocol π is de-
scribed as constructing the desired resource S from the assumed resource R,
denoted as R π−−→ S. Any two such construction steps can be composed,
that is, if we consider another protocol ψ that assumes the resource S and
constructs a resource T , the composition theorem states that

R
π−−→ S ∧ S

ψ−−→ T =⇒ R
ψ◦π−−−→ T,

where ψ ◦ π denotes the composed protocol.
The composability of constructions allows for a modular design of pro-

tocols as a sequence of construction steps. A security proof guarantees the
soundness of one such step, and each proof is independent of the remain-
ing steps. The composition theorem then guarantees that several such steps
can be composed. A consequence of this approach is that each cryptographic
scheme (or security mechanism) is independently analyzed as a construction,
which not only simplifies and modularizes the security proof, but moreover
advocates a modular protocol design in which sub-protocols can easily be re-
placed or modified, without the need to change or re-prove the remaining
protocol steps.

1.1.2 Abstract Cryptography: The Axiomatic Formalization

The foundational idea of abstract cryptography as introduced by Maurer and
Renner [MR11] is to phrase all definitions, statements, and proofs in the most
abstract, and hence formally simplest, formulation. This approach, which
originates in mathematical disciplines such as algebra, is axiomatic in that
one starts with defining abstract structures and continues by describing more
concrete structures that satisfy the axioms of the abstract structures. The
approach can be exemplified using group theory.

1.1. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY 5

A group is an abstract mathematical structure which is described by a set of
objects (the group elements), operations on the group elements, and axioms
on the operations. The group operation is a binary operation, inversion can
be viewed as a unary operation, and the identity element can be viewed as
a nullary one. Several statements can be phrased and proven at this abstract
level. For instance, one can prove that a group of prime order is necessar-
ily cyclic. This statement, if phrased at this level, transfers to all concrete
structures that satisfy the group axioms.

The next lower level is concerned with concrete groups, such as the set Zn
of all integers modulo some number n ∈ N. This level requires one to work
with a “more detailed” type of object—each group element is an equivalence
class of integers. All statements from group theory are inherited, and further-
more one can make additional statements. For instance, one can prove that
the group Z4 is cyclic (and hence different from the direct product Z2 × Z2),
a statement for which it is necessary to investigate the concrete operation on
the concrete group elements.

An even lower level may deal with the implementation of a particular
group and its operations on a computer. At this level, one describes the ele-
ments of a specific group (say, Zn) in some representation in a specific com-
putational model, usually as bit strings. Algorithms that compute the group
operations operate on this representation. This level also fixes a concrete com-
putational model and a notion of run-time. If the implementation is (shown
to be) correct, all statements proven at the upper levels still apply. More-
over, at this level one can formulate and prove statements like that the group
operations can be computed efficiently, and prove or conjecture that certain
problems in the group are hard to solve in the specific computational model.

Abstract cryptography introduces a similar abstraction hierarchy in cryp-
tography. At the highest level of abstraction, the considered objects are ab-
stract systems [MR11], and formalize the concept of objects that can be com-
posed by connecting interfaces. This comprises objects like algorithms or
automata; the interfaces correspond to the input and output of the algorithm,
and the messages obtained or provided by an automaton. Mathematically,
an abstract system is an object that has interfaces which are labeled and via
which it can be connected to other systems. The resulting object is again an
abstract system; the labels of the interfaces allow to describe in which way
two objects are composed. In this sense, abstract systems form an algebra
where the systems are the objects and connecting systems via their interfaces
is the operation; the particular interface sets and connecting operations de-
fined in an algebra determine which topologies can be expressed. In most
system algebras, the order in which systems are composed is irrelevant; such
algebras are called composition-order invariant. The concept of a system alge-

6 CHAPTER 1. INTRODUCTION

bra is formalized in Section 3.2.
The next lower level is concerned with objects that capture the behavior of

systems and formalize the interaction via their interfaces. The most important
type in computer science is that of a discrete system where different systems
communicate by passing messages. Each system operates in a sequence of
activations, where in each activation the system first receives messages via
its interfaces and subsequently provides as output messages at its interfaces.
Each message is then delivered to the system that is connected to the inter-
face where the message was output. The concept of discrete systems exactly
describes the input-output behavior. Other instantiations at this level may, for
instance, formalize systems where the communication is analogue.

Computation, that is, the concept of how the outputs of a system are com-
puted from the inputs, is formalized at an even lower abstraction level. At this
level, objects like Turing machines, random access machines, and algorithms
appear, and notions like run-time and efficiency are defined. Of course, for
each concrete model considered at this level, one has to show how the objects
can be seen as discrete systems, and that the model satisfies the axioms of the
upper levels.

Such an abstract treatment has two major advantages. The first one is
simplicity: Statements that are phrased and proven at the abstract level do
not need to involve technical details such as how, for instance, the compo-
sition of algorithms is defined; proofs are obtained by syntactic operations
on the expressions. The second advantage is generality: An abstract proof
extends to a given instantiation of the system algebra under the sole assump-
tion that a composition operation is defined and satisfies the axioms. This
allows to prove, e.g., the composition theorem of constructive cryptography
once and for all; it automatically transfers to system algebras based on condi-
tional probability distributions (for information-theoretic statements) or any
concrete type of algorithms (for complexity-theoretic statements) for which
the axioms are fulfilled.

1.1.3 Constructions for Secure Communication

The objects that appear in a construction statement, that is, the cryptographic
protocol and resources assumed by this protocol, are described in terms of
abstract systems in a so-called cryptographic algebra [MR11]. This algebra
consists of two sets: a set of resources which model the realistic resources and
which are systems that provide one interface for each party in a given sce-
nario, and a set of converters which model the protocol engines used by the
parties; a protocol is a tuple containing one converter for each party. A con-
verter is a system that has two interfaces: the inside interface that connects

1.1. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY 7

to the party’s interface of the resource, and the outside interface that is used
by the party instead of the original interface of the resource.1 Roughly, a con-
verter can be seen as translating the actions that the party wants to perform
on the constructed resource (e.g., send a message securely) into actions on
the assumed resource (e.g., encrypt the message and send it insecurely), and
the composition operation defines how a converter is applied to a resource.

The notion of construction. The basic scenario in the context of secure
communications is described by two (honest) entities A and B that want to
communicate securely in a potentially hostile environment. Consequently, we
consider resources with three interfaces: two interfaces labeled A and B for
the honest entities, and a third one that is labeled E and captures potential
adversarial access. A protocol π is a pair of converters, one converter π1 for A
and one converter π2 for B. We use the term πR to describe the scenario in
Figure 1.1a, where A uses π1 and B uses π2.

Rπ1 π2A B

E

(a) A resource R with converters π1

and π2 connected at interfaces A
and B, respectively. This setup is de-
noted as πR = π1

Aπ2
BR.

S

σ
A B

E

(b) A resource S with a converter σ
attached at the attacker’s interface E.
This setup is denoted as σES.

Figure 1.1: The two settings involved in the definition of construction. The
algebraic expressions describing such system structures are explained in more
detail in Section 3.2.2.

Following the constructive paradigm, the goal of a protocol π = (π1, π2)
is to construct a certain desired resource S from an assumed resource R. The
converters π1 and π2 can be seen as translating the actions that A and B want
to perform on the desired resource S into actions on the assumed resource R.
The protocol is secure if all actions that a potential attacker can perform on
the resource πR via its interface can be transformed into actions on the re-
source S; if all attacks on πR can be translated into corresponding attacks in

1This corresponds to a star-shaped topology: the resource is the central object, which is ac-
cessed from the parties. Hence, the interface of the converter that connects to the resource is at
the “inside,” the interface provided to the party is at the “outside.”

8 CHAPTER 1. INTRODUCTION

the setting with S, then the security guarantees achieved by πR are at least
as good as the guarantees provided by S. As S specifies the guarantees de-
sired by A and B, the protocol π achieves its goal and is said to construct
the resource S from R. The translation of the attacker’s actions is formal-
ized using a so-called simulator σ, which is also a converter and is attached
to the E-interface of S. This setup with the constructed resource S and the
simulator σ is depicted in Figure 1.1b. The validity of each construction step
is hence “locally” defined as an ideal-world/real-world experiment similar to
previous definitions such as [Can01, PW01].

Example: the one-time pad. The purpose of the simulator is best under-
stood by considering a simple example. We reproduce in Figure 1.2 the ap-
plication of the one-time pad in a simplified setting as described by Mau-
rer [Mau11]. A more detailed discussion is provided in Section 4.4.1. Fig-
ure 1.2a depicts the application of the one-time pad: We assume as resources
a key KEY, which provides to both A and B a uniformly random bit string k,
and an authenticated communication channel AUTH, which allowsA to trans-
mit a ciphertext to B such that the transmitted value may be leaked to E but
cannot be modified. The sender A encrypts a message m by computing a bit-
wise XOR with the key k. This results in a ciphertext c that is transmitted over
the authenticated channel to B. The receiver B decrypts the ciphertext c anal-
ogously to the encryption by computing a bit-wise XOR with k. It is easy to
see that this results in the original message m. The attacker at the E-interface
obtains the ciphertext c, but cannot influence the protocol further.

KEY

AUTHc
=
m
⊕
k

m
=
c
⊕
k

m m

k k

c c

c

(a) The one-time pad applied to an au-
thenticated channel.

SEC

σ

m m

|m|

c ∈R {0, 1}|m|

(b) The constructed resource with a
simulator.

Figure 1.2: The one-time pad as an exemplary application.

Figure 1.2b depicts the “constructed” resource SEC: The secure channel
transmits the given message m from A to B, leaking only the length |m| of
the message at the E-interface. Clearly, the E-interface of SEC differs from
the one shown in Figure 1.2a: while at the authenticated channel the attacker
observes a bit string c of length |m|, at the secure channel he observes the

1.1. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY 9

number |m| that specifies the message length. This difference can be remedied
by using a simulator σ that, given the message length |m|, outputs a uniformly
random bit string c ∈ {0, 1}|m| of the same length as the message. The security
proof now proceeds by observing that the two “dashed” boxes in Figure 1.2
describe the same discrete system. The intuition underlying the simulation
paradigm is that access to the channel SEC is “as useful to the attacker as”
being in the situation of Figure 1.2a, since an attacker can simply sample the
ciphertext by himself, obtaining a ciphertext with the same distribution, and
then launch the same attack as on the real scheme.

More general settings. For several statements we show in this thesis, the
above described scenario with only two honest parties A and B is not suffi-
cient. This includes notions of anonymity where additional “potential partici-
pants” need to be present to even formulate the guarantee, and the setting for
unilaterally authenticated protocols in which one authenticated entity com-
municates with one (or more) unauthenticated entities from a population of
potential communication partners. Such scenarios can be captured by formu-
lating resources that provide more than two “honest” interfaces and protocols
that consist of multiple converters.

Parametrized constructions. Security statements about cryptographic pro-
tocols are often parametrized with values that may depend on the scheme,
such as the key length of an encryption scheme, or on the environment in
which the protocol is used, such as the number of messages that are encrypted
or the protocol participants that are corrupted. The parameters determine the
exact bound that can be proven for the cryptographic scheme. In a construc-
tive perspective, this is formalized by making the parameters properties of
the resources, and proving that a protocol constructs a parametrized family of
resources from another parametrized family of resources.

The advantage of reflecting the parameters in the resources, instead of in
the distinguisher or the adversary as done in most models, is that the con-
struction statements can still be formalized only in terms of the “objects” they
consider (i.e., the resources, the protocol, and the simulator), and need not
explicitly refer to a restricted class of distinguishers or adversaries. This im-
plies that the standard composition theorem extends directly to the case of
parametrized statements, and the “syntactic” composition of sub-protocols
extends to this case.

10 CHAPTER 1. INTRODUCTION

1.1.4 Discrete Systems and Reductions

Abstract systems are abstract mathematical objects and capture the topology
in which multiple systems are connected. To describe (and prove the security
of) cryptographic protocols, we need to specify the behavior of these objects.
In the usual setting considered in cryptography, the systems are discrete in the
sense that their activity can be viewed as occurring in distinct phases, where
each such phase consists of taking as input one or more messages—elements
of some set—and potentially producing as output one or more messages. In a
fully asynchronous setting, the systems are reactive in that they become active
only upon receiving some input. We allow systems to be probabilistic, and
they may be stateful in the sense that if their behavior spans multiple phases,
then outputs produced in some phase may also depend on inputs obtained in
previous phases.

For the case where the order in which the inputs are given to a system
is predetermined, random systems as introduced by Maurer [Mau02] exactly
formalize discrete behavior. The scenario of secure communication, how-
ever, involves several independent parties that communicate, and the order
in which messages are received is not necessarily determined in the begin-
ning. The most general type of discrete system describing arbitrary types of
behavior, however, does not allow for a modular description of complex sce-
narios because the order in which messages are delivered may have a crucial
influence on the behavior [BA83, Bro83]. As most protocols and resources we
consider do not depend on the order of the inputs, but only on their value, we
restrict our attention to a more specific type of system, which can be seen as
a probabilistic version of the type described by Kahn [Kah74]. In Section 3.4,
we extend the random systems concept to this more general case and show
that this type of system indeed fulfills the axioms of the system algebra.

At a lower abstraction level, one can define an explicit model of com-
putation and prove that such a model instantiates the discrete systems de-
scribed here. On that layer, one can then conjecture (or prove) the hardness
of computational problems. An obvious question arising here is: without
specifying such a computational model, how can we (claim to) make state-
ments about cryptographic schemes that are secure only under computational
assumptions? The answer is that our proofs are formalized as explicit reduc-
tions: the validity of a construction statements corresponds to a distinction
problem for two settings, and we explicitly describe for any distinguisher how
it is translated into a solver for a computational problem, and how the per-
formances of the distinguisher and obtained solver relate.

As the statements we prove extend to any computational model that in-
stantiates the discrete systems layer, they prove that in any such model the
probability of breaking the scheme is bounded by a related probability of solv-

1.1. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY 11

ing the underlying computational problem. Consequently, if one conjectures
(or even proves) such a computational problem to be hard in some specific
model, then the proof implies that the scheme will be secure with respect to
all attacks that can be implemented in that model with comparable efficiency.

1.1.5 Related Work on Paradigms for Defining Security

The framework we describe differs in various aspects from previous defini-
tions used in the cryptographic literature. The arguably most significant as-
pect of a security definition is the paradigm employed for defining what a
cryptographic scheme is supposed to achieve. Intuitively, the main question
that must be answered is “When should a cryptographic scheme be considered
secure? How does one define what security means?” In this section, we review
previous work of security definitions and compare the underlying approaches
to the constructive paradigm.

Attack-based definitions. Traditionally, cryptographic security is defined
and analyzed in an attack-based view, where security means that, for a cer-
tain notion of attack, an attacker with well-defined resources cannot launch
a successful attack against the cryptographic scheme. An explicit formaliza-
tion of this approach has been provided by Yao [Yao82] and by Goldwasser
and Micali [GM84]; the technique reached its current state in to work of Bel-
lare and Rogaway [BR06]. The basic idea of these definitions is to describe a
game as the interaction between a hypothetical challenger and a hypothetical
adversary. The adversary has access to a certain set of “oracles” provided by
the challenger, which model the supposed use of the cryptographic scheme
in applications. For instance, to prove an encryption scheme secure against
chosen-plaintext attacks, the adversary would be given an oracle to encrypt
plaintexts of his choice. The overall goal of the adversary is defined by a cer-
tain winning condition; depending on the purpose of the considered scheme,
this condition may correspond to, for instance, extracting useful information
from a ciphertext or forging a digital signature. If there is no (efficient) adver-
sary for which the probability of satisfying the winning condition is noticeably
higher than for a trivial strategy such as guessing the correct answer, then the
scheme is said to fulfill the property defined by the game.

An advantage of these security definitions is that they tend to be tech-
nically simple and are common in many areas of cryptography. It is, how-
ever, usually not clear whether a system composed of several cryptographic
schemes, each with an individual attack-based security proof, is secure for
an overall attack-based security definition. In other words, security often
does not compose in a meaningful way. One instructive example is given by

12 CHAPTER 1. INTRODUCTION

Bellare and Namprempre [BN08] and Krawczyk [Kra01], where it is shown
that a natural composition of a secure encryption scheme and a secure au-
thentication scheme fails in providing both confidentiality and authenticity.
Another example is the early security definition for quantum key distribution.
As discussed by Renner [Ren05], this definition did not guarantee that the
obtained key can be used securely, even in the simple case of one-time pad
encryption. Indeed, in an attack-based view, proving the security of a com-
posite scheme that consists of several sub-schemes requires one to explicitly
show a reduction showing that breaking the security of the composite scheme
requires breaking the security of one of the sub-schemes. In constructive cryp-
tography and models based on the idea of universal composability [Can01],
an explicit such proof is not necessary because the security of the composite
scheme follows generically from the composition theorem.

Many different properties have been proposed in the literature, which
raises the question of which security notion for a given scheme is suitable
or necessary for a certain higher-level protocol (using that scheme) to be se-
cure. The traditional answer to this question is that for each protocol one
(actually, a cryptography expert) needs to identify the right security notion
and provide an explicit reduction proof, showing that breaking a certain secu-
rity property of the protocol requires breaking the security of the underlying
scheme. This is mostly due to the fact that the models fall short of arguing
why they are sound abstractions of reality; it is difficult to argue that the
oracles provided to the adversary formalize the use of the scheme in a re-
alistic scenario. For instance, even modifications such as padding plaintexts
to a certain length before encrypting may render proven schemes insecure,
which has been modeled in the game-based setting by introducing additional
“padding oracles” [Vau02] after such attacks occurred. A further example is
described by Hirt and Zikas [HZ10], who show that the property-based def-
inition of broadcast does not achieve the intuitively expected security guar-
antees. These examples show that the actual security guarantees that one
obtains by applying a provably secure scheme in a specific context are usually
not evident. Finally, game-based notions are fragile in the sense that seem-
ingly innocent changes may have a significant impact on the security guaran-
tees. One example is the security notion indistinguishability from random bits
introduced by Rogaway et al. [RBB03]. A minor change of the way in which
the random ciphertext is sampled [Iwa06] makes the guarantee meaningless.

Idealization of schemes. A different type of security definition is based on
idealizing the behavior of a given scheme. This type is based on the “real-
world/ideal-world” paradigm as introduced by Goldreich et al. [GMW87] and
formalized in the subsequent works of Goldwasser and Levin [GL90], Micali

1.1. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY 13

and Rogaway [MR91], and Beaver [Bea91] in the context of multi-party com-
putation (MPC). Those definitions are often referred to as simulation-based,
since they are based on the simulation paradigm introduced in the seminal
work by Goldwasser, Micali, and Rackoff [GMR85] on interactive proofs. A
protocol is deemed secure if, for each adversary that attacks the protocol,
there exists a simulator (also called “ideal adversary”) that implements the
same attack in the hypothetical execution of an idealized process that is se-
cure by definition, in the sense that no (efficient) algorithm can distinguish
between the transcripts (i.e., all inputs, outputs, and messages appearing in
the protocol run) of the two executions. The underlying intuition is that,
since every attack can be translated from the real protocol execution to the
ideal process, the protocol is at least as secure as the ideal process. Several
specific simulation-based definitions appear in the literature for tasks such as
key establishment [BCK98, Sho99]. These definitions often do not come with
explicit composition theorems and are usually referred to as “stand-alone”
security.

Based on the initial simulation-based definitions, several frameworks that
allow for a more general composition of protocols have emerged. The first and
still most widely used such framework has been defined by Canetti [Can01],
other proposals have been made by Backes, Pfitzmann, and Waidner [PW01,
BPW07] and by Küsters and Tüngerthal [Küs06, KT13]. In these frameworks,
a cryptographic scheme, which is formalized as a tuple of algorithms, is shown
to be as secure as an idealized version of the algorithms, which is often called
the ideal functionality and models the goals and the tolerated imperfections of
a scheme. The ideal functionality is described with an explicit adversarial in-
terface with well-defined capabilities to model the security guarantees. While
the mentioned frameworks differ considerably in many technical details such
as the underlying model of computation, they all build on the same idea.
Essentially, the distinguishing algorithm also present in the prior simulation-
based definitions becomes interactive in the sense that it does not only com-
pare the transcripts of the completed real and ideal executions. Instead, it
also influences the ongoing execution by providing local input to or receiv-
ing local output from the protocol machines as well as seeing and potentially
changing the messages sent during the execution.

The above described approach leads to capturing the functionality of cryp-
tographic schemes in ideal functionalities (sometimes also called ideal inter-
faces [BFK+13a]), such as the public-key encryption functionality FPKE de-
scribed by Canetti [CKN03] or the functionalities for symmetric encryption
described by Küsters and Tüngerthal [KT09]. The interfaces of such a func-
tionality closely resemble the interfaces of the algorithms (although, e.g., the
private keys are never output). In such a treatment, elements that are es-

14 CHAPTER 1. INTRODUCTION

sential for using the scheme, such as the ciphertext or the public key, will
still appear in the functionality, but they are idealized in that, for example,
the ciphertext is independent of the corresponding plaintext; the idealized
scheme is unbreakable by definition. The most significant difference between
this type of security definition and constructions is that an idealized algo-
rithm still provides an interface that resembles an implementation, whereas a
constructive statement models the application of a scheme in its supposed en-
vironment. This effects that, first, the exact assumptions required for securely
using a cryptographic scheme are still not explicit in the security statement,
and that, second, a higher-level scheme will still depend on the actual type
of the lower-level schemes, not only their provided guarantees. While from
a constructive perspective it is irrelevant whether an authenticated channel
assumed by some scheme is constructed via a MAC or a signature scheme, the
same statement does not hold if one formulates it with respect to the ideal-
ized algorithms. That implies that a higher-level scheme cannot be designed
independently of the lower-level schemes.

The formal frameworks underlying the described works can be used in
(or easily adapted to) security statements of a different type; one can (al-
most) make constructive security statements within the formal frameworks
of [PW01, Can01]. The statements shown in [PW01, CK02b] involve func-
tionalities which are similar in spirit to the resources we describe here, and
the security statements can (almost2) be viewed as constructions.

1.1.6 Related Work on Models of Discrete Systems

Most schemes considered in cryptography are discrete systems in the sense
that their behavior is described by taking as input messages, i.e., elements
of some well-defined message space, and as a reaction producing as output
also messages which are then given as input to other systems. Various mod-
els of discrete systems appear in the literature on distributed systems and
cryptography. Most of these models are based on concepts from related ar-
eas of computer science like complexity theory or distributed systems. As a
result, the models often focus on unsuitable aspects, and additional artifacts
are introduced by artificial design choices which are made when adapting the
models to the cryptographic setting. By contrast, our goal is to capture the

2This would mean that a protocol constructs an ideal functionality from “assumed ideal func-
tionalities,” often referred to as hybrid functionalities. As protocols can instantiate hybrid func-
tionalities during the execution and even with adaptively chosen code, one cannot specify a
protocol independently of its hybrids (as it would be necessary for a constructive statement). In
general, it is even impossible to decide whether a protocol is an “F -hybrid protocol” for some
F . If one changes the handling of hybrid functionalities, one can interpret the statements from a
constructive perspective.

1.1. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY 15

(conceptually minimal) mathematical type of discrete systems.
There is an important conceptual difference between the type of an object

and the specification language one uses to describe the object. As an example,
consider the mathematical type of a function f : X → Y for two arbitrary
but fixed discrete sets X and Y. Generally, there may be different a priori
equally valid ways to specify what f does: if X is finite, one could write
down the function table; if X and Y carry some algebraic structure, there
might be a closed algebraic expression for f ; if f is computable, one could
write down an algorithm computing f , and so forth. The only requirement
for a specification language is that each specification uniquely describes the
object that is to be considered. In contrast, the type (here: the function) is
universal and independent of the description. This separation between type
and specification language is often unclear in existing models.

Describing individual systems. As most practical cryptographic schemes
and protocols rely on complexity-theoretic assumptions, many models that
appear in the cryptographic literature are based on the Turing machine model
inherited from complexity theory. For instance, many game-based models
define a random experiment based on a Turing machine that has access to
a set of oracles (a standard technique in complexity theory): the adversary
is a Turing machine, and its access to the scheme is formalized via oracles.
Several general frameworks such as Canetti’s UC model [Can01] and sub-
sequent works such as [Küs06, HS11] are based on a setting with multiple
communicating interactive Turing machines (ITMs), which are basically Tur-
ing machines that can additionally write to tapes of other Turing machines.

While the objects are defined to be ITMs, they are usually described using
some type of pseudo code. Without fixing a rule of how the pseudo code is to
be translated into a Turing machine, the pseudo code does, however, not even
exactly specify the computation that an ITM performs. Moreover, the exact
(mathematical) definition and properties of ITMs are hardly used, even in the
fundamental theorems concerning the model. The intuitive understanding,
made explicit by Hofheinz and Shoup [HS11], seems to be that “[...] none of
these details matter.” But then, this can also be seen as evidence that ITMs
are not the suitable abstraction.

I/O automata discussed in the literature [SL94, PW01, CCK+06, BPW07]
are more abstract than a description in terms of Turing machines. In par-
ticular, an automaton is an object with state and is described by the state
transition that it makes upon receiving a certain message. Hence, while the
modeling of state is still explicit, the exact computation of the state transi-
tion does not need to be specified. Often, an algorithmic language is used to
specify the transition functions.

16 CHAPTER 1. INTRODUCTION

The work of Kahn [Kah74] models processes in a network as functions
from input histories to output histories; several processes are connected by
identifying the output values in the history of one system with the input val-
ues of another system. For this approach to work, one has to require a certain
type of monotonicity from the functions, which restricts their expressiveness
in the sense that certain types of behavior cannot be captured. More con-
cretely, systems may not behave differently based on the order in which mes-
sages on “different input channels” arrive. Kahn also describes a specification
language which is carefully designed to allow only for describing objects of
the considered type. The type of discrete system we consider in this work is
similar to the one described by Kahn, but additionally captures probabilistic
behavior.

The recent framework of Micciancio and Tessaro [MT13] can be seen as
a generalization of Kahn networks. Systems do not need to exactly fit the
type described by Kahn; intuitively an output of a system can be replaced by
an “overdefined” value if two differing orders of inputs would lead to differ-
ent values for the output. The objects they consider are functions which are
monotone as in Kahn’s model, but monotonicity is more general for their type.
Still, the model is geared towards being a proof technique, the type considered
(an extended type of monotone functions) is not the actual type of a proto-
col. Furthermore, they do not provide an interpretation for computational
statements.

A different approach underlies the code-based game-playing technique of
Bellare and Rogaway [BR06], where manipulations of code (i.e., the specifi-
cation language) are a core part of the framework. This allows for a rigorous
specification and proof of schemes, but the type of behavior is not described
explicitly. Furthermore, it is not clear how their model (which is specified for
game-based definitions) extends to topologies which are more general than
the interaction of a single adversary with a single challenger.

The goal of the random systems framework [Mau02, MPR07] is to ex-
actly capture the type of “probabilistic and interactive” objects like (uniform)
random functions, (uniform) random permutations, block ciphers, MAC func-
tions, and so forth. These objects, however, have the property that the in-
teraction with their environment is specified by a sequence of queries with a
certain pre-determined order—they can be seen as single-interface systems.
Random systems do not immediately give rise to a general instantiation of an
abstract system algebra, as in a general setting it is not guaranteed that the in-
puts are given in the assumed order. One can still specify a system algebra by
always providing the interface at which an input (or output) is given explicitly
in the provided value, thereby also restricting the system to provide at most
one output in each activation, which is similar to the type of communication

1.1. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY 17

described in the UC framework [Can01].

Interactions of multiple systems and scheduling. In a general setting
with asynchronous systems, events may occur in different orders depend-
ing on how long it takes for messages to be delivered to the receiver. To
make the ordering of events in a protocol execution well-defined, the models
of [Can01, Küs06, HS11] restrict the type of system to generate at most one
message in each activation and remain inactive until it receives the next mes-
sage. This allows for easily determining the next ITM to be activated, since at
every point in time only one ITM has input (this is always the receiver of the
message, hence all activations build a chain). Additionally, there is a “master-
scheduler” that is activated if no output is generated. While the constraint
on the systems is necessary for the particular machine model and scheduling
scheme, it restricts the type of systems that can be described and necessi-
tates further artifacts such as, e.g., “delayed outputs” that are scheduled by a
dedicated adversarial entity (see Canetti’s UC framework [Can13]).

Models based on automata often allow for producing a variable number of
output messages in each step, which requires them to define a scheme for the
scheduling of the messages; the employed schemes differ between the mod-
els. The models related to reactive simulatability (RSIM) [PW01, BPW07]
determine a dedicated scheduler, a system that decides in which order the
other systems are activated. Often, this role is taken by the adversary to
make a “worst-case assumption.” Still, such an explicit scheduler that glob-
ally controls the activations of the automata is an artificial concept that does
not have a counterpart in the real world. Other frameworks define more
complicated schemes: in the framework of task-structured probabilistic I/O
automata [CCLP07], several different “levels” of scheduling are specified: The
“large-scale” schedule of tasks—a collection of several “associated” actions of
an automaton—is chosen non-deterministically in advance, while the sched-
ule within these tasks is determined by an explicit local scheduler.

Run-time, efficiency, and asymptotics. Most frameworks come with a fixed
notion of run-time and efficiency [Can01, Küs06, HS11], which is usually
some variation of polynomial time. As the standard complexity-theoretic def-
inition (the run-time of an algorithm must be polynomial in the size of the
input) is not applicable to the more general scenario of interactive Turing ma-
chines, the frameworks generalize that notion. Straightforward approaches
such as requiring the run-time to be polynomial in all inputs do not work,
since two systems could “ping-pong” messages and run indefinitely. Multiple
types of definitions have been discussed, most of them introducing further

18 CHAPTER 1. INTRODUCTION

artifacts to the formal model. The notion used in the widely used UC frame-
work [Can01, Can13] is based on the idea that inputs “contain” run-time and
hence the length of inputs to other machines is required to shrink throughout
the execution. This implies that one needs to (formally) modify protocols and
append artificial suffixes for most inputs to transmit “run-time” to the receiver
of that input. The definition of Küsters [Küs06] introduces an asymmetry to
the type of system such that only some subset of the tapes is “enriching” and
the run-time of the system must be polynomial in the length of the contents
of those tapes; the structure of a composite system must not contain a cy-
cle in terms of enriching tapes. A more indirect approach has been given by
Hofheinz, Müller-Quade, and Unruh [HMU05] and is adopted by Küsters and
Tüngerthal [KT13], who define that a protocol is efficient if it makes polyno-
mially many steps in any (strictly) poly-time environment.

The complexity-theoretic approach to defining run-time as the number
of steps an algorithm requires on a Turing machine has several downsides.
Measuring run-time in terms of Turing machine steps only gives somewhat
limited information about the actual run-time in a more realistic model (such
as a random access machine), because various steps are significantly less effi-
cient on a Turing machine. If one is interested only in statements with respect
to polynomial run-time, this artifact is not important because it is known that
most computational models are equivalent “up to a polynomial gap.” Yet, for
obtaining practically meaningful cryptographic statements, a “concrete” type
of run-time, measuring e.g. the effort that it takes to break a cryptographic
scheme for some fixed key length, is required, because concrete parameters
must be chosen before a scheme is deployed in practice. While some schemes
such as the one of Canetti [Can13], despite their artificial definition, allow
to at least obtain some insight about concrete run-time, other notions such as
the one from Hofheinz et al. [HMU05] do not even have an interpretation for
concrete values but are inherently bound to be asymptotic. The asymptotic
parameter is usually an input to the algorithms, either on a special “secu-
rity parameter” tape or as part of the usual input. The security parameter is
often specified in unary to make use of standard complexity-theoretic defini-
tions of run-time, which is measured in terms of the input length. If a model
(such as ours) is not intrinsically asymptotic but one is interested in making
asymptotic statements, one can still consider families of concrete objects for
each k ∈ N. This corresponds to “non-uniform” algorithms; uniformity can be
made explicit as a requirement at the level at which computation is defined.

1.2. CONSTRUCTING RESOURCES FOR SECURE COMMUNICATION 19

1.2 Constructing Resources for Secure Communi-
cation

The second contribution of the thesis is the application of the formal frame-
work described in Section 1.1 to cryptographic protocols in the area of se-
cure communication. The first application we consider is the protection of
message transmissions in a setting where a shared secret key is available to
the honest parties. The most important types of schemes in this scenario
are symmetric encryption schemes and message authentication codes, and
there are two ways of composing the schemes: either one first encrypts and
then applies the authentication code, or one first applies the authentication
code and then encrypts the authenticated message. The relevant resources
and the constructions that are achieved in those cases are sketched in Sec-
tion 1.2.1. The second application is related to anonymity in the context of
secure communication. Suppose one is given a public-key encryption scheme,
and the sender sends an encrypted message anonymously to a receiver. Will
this scheme preserve the anonymity, or will the ciphertext leak information
about which key was used to encrypt? The resources required for formalizing
this problem and the proposed solution are introduced in Section 1.2.2. The
third application is unilaterally authenticated key establishment, that is, key
establishment in a setting where only one out of the two participants has a
certified public key. We describe the key constructed by such a protocol as a
resource and show how to construct it from realistic resources using a sim-
ple protocol that is modular, efficient, and secure under mild assumptions, in
Section 1.2.3. The material discussed in this section is described in detail in
Chapter 4, the major part of it appeared in similar form in earlier publica-
tions [MT10, MRT12, KMO+13, MTC13].

1.2.1 Secure Communication Between Two Parties

The basic scenario for secure communication consists of a sender A, a re-
ceiver B, and an attacker E. The goal of cryptographic protocols in this set-
ting is to achieve secure communication, that is, communication where the
attacker cannot eavesdrop or disturb the communication, even if only non-
confidential communication channels are available to begin with.

Resources for Secure Communication between Two Parties

The most important types of resources in the described setting are different
types of communication channels, which model both the existing communi-
cation resources (e.g., insecure communication via networks such as the In-

20 CHAPTER 1. INTRODUCTION

ternet) and the desired secure end-to-end communication that cryptographic
protocols are supposed to achieve, and that is useful for higher-level protocols
such as web browsing, mail transmission, or remote file access. Another type
of resource captures the notion of a shared secret key, or other types of shared
secret randomness.

Communication channels. A communication channel from an honest send-
erA to an honest receiverB can be described as a system with three interfaces
labeled A, B, and E (the attacker), respectively, where the security proper-
ties of the channel are characterized by the capabilities provided at the E-
interface. The basic types of channels are (informally) described in Table 1.1,
using the notation of Maurer and Schmid [MS96], and are specified formally
in Section 4.1.

− → An insecure channel leaks the transmitted message to the attacker.
It also allows the attacker to determine the message output to
the receiver. This channel models insecure networks such as the
Internet.

•− → An authenticated channel leaks the transmitted message to the at-
tacker. The attacker may forward the same message, or interrupt
the channel.

− →• A confidential channel does not leak the transmitted messages to
the attacker. The attacker can influence the message output to the
receiver.

•− →• A secure channel does not leak the transmitted message to the at-
tacker. The attacker may forward the same message, or interrupt
the channel.

Table 1.1: Basic communication channels in the setting with a sender A, a
receiver B, and an attacker E.

The intuitive interpretation of the symbol “•” is that the capabilities at the
marked (sender’s or receiver’s) side of the channel are provided exclusively
to that party. Consequently, if one side is not marked, the attacker might
also be able to send or receive messages. We will consider more types of
channels, such as channels that allow to transmit only a single message and
channels that allow for a larger (or even unbounded) number of messages. A
single-use channel allows for exactly one message to be input by the sender,
and one message to be output at the B-interface, and is indicated by a single
arrow tip “�.” A multiple-use channel allows for several inputs and outputs;
multiple-use channels are indicated by a double arrow tip “�.”

1.2. CONSTRUCTING RESOURCES FOR SECURE COMMUNICATION 21

Keys. Keys that are shared between (honest) parties are also considered
a resource. A shared secret key is denoted by •= =• and provides the same
random value at the A- and B-interfaces. Depending on the exact type con-
sidered, the resource may allow the attacker to prevent the key from being
output to the parties, but not obtain the value of the key. This resource mod-
els the key that is required by (symmetric) schemes; it could be generated in
a key-establishment protocol such as Diffie-Hellman in a setting where both
parties are authenticated. Cryptographic keys and other types of shared ran-
domness resources are formally specified in Section 4.2.

Protocols for Secure Communication between Two Parties

Cryptographic schemes such as encryption or MAC schemes give rise to proto-
cols that construct from one type of channel (and possibly a shared secret key)
a “more secure” type of channel. In Figure 1.3, the protocol sc = (enc, dec)
uses as resources a channel •− → and a key •= =•. The converter enc is at-
tached with its inside interface to the A-interfaces of •− → and •= =• (dec is
attached to the B-interfaces), and the outside interfaces of enc and dec are
the interfaces of the constructed (dashed) system, which is again a channel.

•= =•

•− →
enc decA B

E

Figure 1.3: Encryption protocol sc = (enc, dec) applied to the key •= =• and
the channel •− →.

In Sections 4.3 and 4.4, we show the construction statements achieved
by MAC and symmetric encryption schemes. We show that a MAC constructs
from an insecure channel (and a shared secret key) an authenticated channel.
This construction statement can be written as

(•= =•,− →)
MAC−−−−→ •− →.

We show that protocols based on either pseudo-random functions or weakly
unforgeable (WUF-CMA—weakly unforgeable under chosen-message attack)
MAC schemes are sufficient for this construction. Encryption then corre-
sponds to constructing from an authenticated channel (and another shared

22 CHAPTER 1. INTRODUCTION

secret key) a secure channel, which is written as

(•= =•, •− →)
Encrypt−−−−−→ •− →•.

We show that the one-time pad (OTP) and cipher-block chaining (CBC) mode
encryption both achieve this construction; the one-time pad proof generalizes
naturally to stream ciphers and counter-mode encryption. If the ciphertext
of a scheme like the one-time pad is transmitted over an insecure channel,
the constructed channel will not be secure. We show that, in particular, the
one-time pad achieves the construction

(•= =•,− →)
OTP−−−→ −⊕→•,

where the symbol −⊕→• denotes the XOR-malleable confidential channel,
which does not leak the message to the attacker but allows him to modify
a transmitted message by applying an “XOR-mask.”

Capturing previous definitions. Traditional security definitions in the con-
text of secure communication specify properties of cryptographic schemes
in terms of resilience against classes of attacks. For symmetric encryption
schemes, these properties are intended to model the protection of the confi-
dentiality or the integrity of the encrypted messages. A vast variety of such
definitions has emerged in the literature and, despite the efforts of previous
work, the relations and interplay of many of these notions (which are a priori
not composable) are unexplored. The oracle queries and winning conditions
of games encode the use and guarantees only implicitly, and the exact guar-
antees are often hard to understand.

In constructive cryptography, notions such as confidentiality and integrity
appear as attributes of channels, i.e., the communication itself, making the
guarantees achieved by cryptographic schemes explicit. The security of com-
munication channels corresponds to restrictions on the capabilities provided
at the E-interface, which can be characterized according to two aspects: the
amount of information leaked about transmitted messages, and the potential
influence on messages delivered to the receiver.

Besides showing that weakly unforgeable MACs construct an authenti-
cated channel from an insecure channel and a shared secret key, we ana-
lyze notions for symmetric encryption schemes. In particular, we show that
an encryption scheme is IND-CPA (indistinguishability under chosen-plaintext
attack) secure if and only if it achieves the construction

(•= =•, •−�)
Encrypt−−−−−→ •−�•,

1.2. CONSTRUCTING RESOURCES FOR SECURE COMMUNICATION 23

that is, the scheme can be used to protect multiple messages. We also show
that an IND-CCA (indistinguishability under chosen-ciphertext attack) secure
scheme achieves

(•= =•,−�)
Encrypt−−−−−→ −��•,

where the channel −��• is confidential but does not prevent, for instance,
that messages are replayed or reordered. Also, the channel does not prevent
the attacker from sending unrelated messages to B. Finally, we show that a
scheme that is both IND-CPA and INT-CTXT (integrity of ciphertexts) secure
achieves

(•= =•,−�)
Encrypt−−−−−→ •−��•,

where the channel •−��• protects confidentiality and authenticity but does
not prevent replays or reordering messages. In contrast to −��•, the channel
does not allow the attacker to send unrelated messages to B.

Generic composition of MAC and encryption. The construction steps de-
scribed above for MAC and encryption correspond to the well-known Encrypt-
then-Authenticate (EtA) paradigm. In the dual paradigm, Authenticate-then-
Encrypt (AtE), encryption first constructs from an insecure channel (and a
shared secret key) a confidential channel, and a MAC constructs from this
(and another shared secret key) a secure channel. As pointed out by Bel-
lare and Namprempre [BN00], and Krawczyk [Kra01], there are encryption
schemes for which AtE does not achieve the expected guarantees. We show,
however, that specific schemes such as the one-time pad or CBC-mode encryp-
tion for block ciphers together with a strongly unforgeable (SUF-CMA) MAC
are still sufficient to construct a secure channel.

Regarding protocols as transformations of channels is dual to the com-
mon interpretation of schemes as transformations of messages. This duality
becomes evident in the analysis of the EtA and AtE transformations. EtA is de-
picted in Figure 1.4a: One first applies the MAC to the insecure channel − →
and a shared secret key •= =• (this, as discussed above, can be seen as an
authenticated channel), and then uses the encryption scheme to obtain a se-
cure channel •− →•. As in Figure 1.3, the composition of systems grouped by
the dashed box behaves as an authenticated channel •− → (with a simulator).
An encryption scheme hence guarantees that the (dotted) system constructed
from the authenticated channel and a shared key •= =• is a secure channel.
This transformation is usually referred to as Encrypt-then-Authenticate, since
the first operation applied to the plaintext input at the outside A-interface is
encryption. From our perspective of channel transformations, however, the
first mechanism applied to the insecure channel − → is the authentication.
For the sake of consistency with previous literature, we will maintain the term

24 CHAPTER 1. INTRODUCTION

•= =•

− →
tag chk

•= =•

enc decA B

E

(a) Encrypt-then-Authenticate

•= =•

− →
enc dec

•= =•

tag chkA B

E

(b) Authenticate-then-Encrypt

Figure 1.4: Generic constructions of secure channels using encryption sc =
(enc, dec) and authentication mac = (tag, chk).

EtA for this transformation, keeping in mind that the permuted appearance of
the terms “encryption” and “authentication” is an effect of the paradigm shift
underlying constructive cryptography.

The dual paradigm, AtE, uses the encryption to transform the insecure
channel − → into a confidential channel − →• indicated by the dashed box
in Figure 1.4b. This channel is transformed into a secure channel by a MAC.
While EtA is secure under widely used assumptions, the case of AtE is sub-
stantially more involved. We show in Section 4.5.2 that the composition of
the one-time pad encryption (this extends to stream ciphers) with a strongly
unforgeable (SUF-CMA) MAC indeed constructs a secure channel. In con-
trast to EtA, the second construction step is specific to the malleability of the
confidential channel, and in this sense also specific to the encryption scheme.

Related Work

Most research in the context of secure communications follows an attack-
based approach as discussed in Section 1.1.5. We describe this related work
and sketch the relation to our definitions. For MAC schemes, two slightly dif-
ferent notions of unforgeability (WUF-CMA and SUF-CMA, which we describe
in Section 2.4.2) have emerged as the standard notions [BCK96, BKR00]. We
show in Sections 4.3.2, 4.5.2, and 5.2 that such schemes can indeed be used
to construct an authenticated channel from an insecure one or, alternatively,
a secure channel from certain types of confidential ones (always assuming a
pre-shared secret key). Bellare et al. [BGM04] have pointed out differences
between several variants of the definitions with respect to the number of ver-
ification queries that are allowed to the adversary.

The most widely used definitions of confidentiality for symmetric encryp-
tion are called IND-CPA and IND-CCA and are derived from the respective
public-key notions [GM84, NY90, ZS92], they have been translated to the
setting of symmetric encryption schemes by Bellare et al. [BDJR97]. Fur-

1.2. CONSTRUCTING RESOURCES FOR SECURE COMMUNICATION 25

ther variants of these notions are introduced and compared by Katz and
Yung [KY00a]. We describe the corresponding games in Section 2.4.3 and
show in Section 4.4.3 that IND-CPA security is equivalent to constructing a
secure channel from an authenticated one, and IND-CCA is sufficient for con-
structing a non-malleable confidential channel from an insecure one (always
assuming a pre-shared secret key).

Several types of integrity guarantees for symmetric encryption schemes
have been considered. Notions of non-malleable encryption first appeared
for public-key schemes [BDPR98, DDN00], and were later translated to the
symmetric case [BN00]. Several related notions such as unforgeability of
ciphertexts have been discussed [GDK02, KY00b]. Further widely used no-
tions are INT-CTXT and INT-PTXT (integrity of ciphertext and integrity of
plaintext, respectively) introduced and analyzed by Bellare and Namprem-
pre [BN00], their relation is further examined by Paterson et al. [PRS11].
Also, various types of unforgeability notions appear in the literature [GDK02,
KY00b, Kra01]. Constructively, integrity guarantees of encryption schemes
are formalized by describing the particular type of confidential channel that
is constructed by the scheme from an insecure channel and a shared secret
key. We show in Section 4.4.3 that a scheme which is IND-CPA and INT-CTXT
secure already constructs a secure channel, and as non-malleability (in the
CCA case) is equivalent to IND-CCA, a non-malleable scheme constructs a
non-malleable confidential channel. Further relations have been discussed by
Maurer et al. [MRT12].

Schemes that protect both the confidentiality and the authenticity are of-
ten called authenticated encryption schemes, and their security is usually de-
fined by a combination of properties for confidentiality and integrity [BN00,
RBB03]. The standard combination is IND-CPA and INT-CTXT [BN00, BR00,
KY00b]; combinations with weaker types of integrity properties have been
discussed in several papers [BN00, CK01, GDK02, KY00b, Nam02]. A sin-
gle game-based notion for authenticated encryption has been proposed by
Shrimpton [Shr04] and Rogaway and Shrimpton [RS06]. Notions of authen-
ticated encryption correspond to the construction of a secure channel from
an insecure channel and a secret key. Jager et al. [JKSS12] have introduced
authenticated and confidential channel establishment in the context of the TLS
protocol. The notion formalizes the security achieved by the composition of a
key-establishment protocol and authenticated encryption in an attack-based
model and was introduced because the “handshake” sub-protocol of TLS can-
not be proven in standard models for key establishment. It corresponds to a
construction of a secure channel from a resource that formalizes the assump-
tions of the key-establishment protocol and insecure communication chan-
nels.

26 CHAPTER 1. INTRODUCTION

Simulation-based definitions of secure communication have been given by
Pfitzmann and Waidner [PW01] for reactive simulatability, and by Canetti
and Krawczyk [CK02b] for universal composability. The ideal functionalities
described in those works are similar to the channels we describe here, but the
security statements are not phrased as constructions and are formalized in
different formal models. Surprisingly, the corresponding security proofs are
performed in a single step and do not exploit the composability guaranteed
by the respective frameworks. Symmetric encryption has been formalized
as an ideal functionality by Küsters and Tüngerthal [KT09]. The description
of the ideal functionality turns out to be complex because of difficulties with
handling the secret keys within the functionality—these issues disappear if the
key is considered as a resource. A “hybrid” approach to the definition of secure
channels is pursued in the definition of [CK01]: authenticity is simulation-
based, while confidentiality is game-based.

The first formal proof of the one-time pad was given by Shannon [Sha49],
who showed that the ciphertext, as a random variable, is independent of the
plaintext and therefore does not contain any information about the message.
The constructive perspective on the one-time pad has been described by Mau-
rer [Mau11]; we show in Section 4.4.1 how the treatment given there is for-
malized in terms of discrete systems. Moreover, we also formalize the guar-
antee that one obtains if the ciphertext is transmitted via an insecure channel.
CBC-mode encryption was first formally analyzed by Bellare et al. [BDJR97]
in a game-based security model. Their analysis with respect to IND-CPA cor-
responds to a construction of a secure channel from an authenticated channel
and a secret key; we provide an explicit constructive proof in Section 4.4.2.
The advantage of the constructive proof is in its modularity: CBC-mode en-
cryption is proven based on a uniform random permutation (instead of a
pseudo-random permutation), and the reduction to the security of a pseudo-
random permutation follows directly from the composition theorem.

The Encrypt-then-Authenticate transformation of an encryption scheme
and a MAC scheme secure under the game-based standard notions is se-
cure as an authenticated encryption, while the corresponding statement does
not hold for Authenticate-then-Encrypt [BN00, Kra01]. Results showing that
certain combinations of schemes that are still secure exist [Kra01, MT10,
PRS11]; as they focus on the schemes used in TLS and hence we discuss them
in Section 1.3.3. Ferguson and Schneier [FS03] compare EtA and AtE from a
practical perspective. On the one hand, they argue that AtE is favorable for
two reasons. First, the MAC is “protected” by the encryption, which makes at-
tacking the authenticity of the combined scheme more difficult. Second, the
authentication is applied to the plaintext, while in EtA, only the ciphertext is
authenticated. On the other hand, they note that EtA is generically secure

1.2. CONSTRUCTING RESOURCES FOR SECURE COMMUNICATION 27

and more resilient to certain Denial-of-Service attacks.

1.2.2 Receiver-Anonymous Communication

A formalization of anonymous communication requires a setting with multi-
ple senders or receivers. The reason is that anonymity generally holds only
with respect to some anonymity set in the sense that the only information
that an attacker obtains is that a message was sent from or to any one of
the parties in that set. If this set contains only a single element, anonymity
is vacuous. Anonymous communication can protect either the anonymity of
the sender or the anonymity of the receiver (or both), and the resources used
to formalize the guarantees are therefore modeled with multiple senders, or
multiple receivers, or both.

Resources for Anonymous Communication

We focus on the case of receiver-anonymous communication and describe
channels with multiple receiver interfaces. Whenever a sender inputs a mes-
sage for some recipient at its interface, the channel might leak certain in-
formation about the message (such as its length or even the complete plain-
text) at the attacker’s interface; however, the channel will not reveal the re-
ceiver. We describe two channels that are useful for the analysis of anonymity-
preserving public-key encryption in Table 1.2, the specifications are given in
Section 4.6.

− / An insecure broadcast channel allows a single sender to broad-
cast messages to multiple receivers. The messages are leaked to
the attacker, who can additionally modify the messages and de-
cide which message is delivered to which receiver. This channel
corresponds to, for instance, wireless broadcast transmissions.

−−?��•�• A confidential receiver-anonymous channel allows a single sender
to send a message to a chosen receiver. The channel leaks neither
the transmitted message nor the identity of the intended receiver
to the attacker. The attacker may forward the transmitted mes-
sages to the intended receivers, and inject chosen messages to
chosen receivers.

Table 1.2: Communication resources with a single sender A, multiple re-
ceivers B1, B2, . . . , and a single attacker E.

The first channel is an insecure broadcast channel − / that allows the
sender to send a single message to all receivers. This channel can be achieved

28 CHAPTER 1. INTRODUCTION

by either multi-sending via a network of point-to-point channels, or physi-
cally as in a wireless communication network. The channel −−?��•�• models
confidential and receiver-anonymous communication. In contrast to − / , the
sender chooses for each message a dedicated receiver Bi, and the message
will only be output at interface Bi (and not at Bj with j 6= i). The attacker
learns neither the message nor the receiver.

Protocols for Anonymous Communication

While anonymity and confidentiality appear to be orthogonal properties, mak-
ing anonymous communication confidential is more involved than one might
expect, since the ciphertext might reveal which public key has been used to
encrypt. In fact, for the case where encryption schemes are used for end-to-
end encryption between senders and receivers, anonymity cannot be created
by the encryption scheme. Such schemes can only preserve anonymity that is
guaranteed by the underlying network:3 If a sender A sends a message to a
receiver B over the Internet using B’s publicly known IP address, then there
is no hope for the encryption scheme to hide the fact that B is the intended
receiver of A’s message. Encrypting messages potentially makes the problem
worse: Even if the transmission of the ciphertext is itself anonymous, the
ciphertext might still reveal under which public key it was encrypted.

To address this problem, public-key cryptosystems with enhanced security
properties have been proposed. We describe the application of a public-key
encryption scheme in the described scenario, and prove in Section 4.6 that
the construction

(← −•n,− /)
PKE−−−→ −−?��•�•

is achieved by a public-key encryption scheme that fulfills the properties IND-
CCA, key privacy (IK-CCA), and weak robustness (WROB-CCA) defined in the
literature, e.g. [BBDP01, ABN10]. The symbol← −•n indicates that there is an
authenticated channel from each receiver B1, . . . , Bn to the sender A which
are required to send the public keys of the receivers to the sender, and the
channels − / and −−?��•�• have been described in Table 1.2.

Related Work

Several types of cryptographic schemes have been investigated with a focus
on anonymity. In “key-private” public-key encryption, the ciphertext does

3Note that this observation does not hold for active networks or overlay networks that can
implement their own multi-hop anonymous routing strategy for which encryption is in fact cru-
cial. Buses [BD03] is a cryptographic design exemplifying this, while TOR [DMS04] is the most
widely used anonymity system based on this principle.

1.2. CONSTRUCTING RESOURCES FOR SECURE COMMUNICATION 29

not reveal information about the intended receiver [BBDP01, ABN10], in pri-
vate key establishment [Aba02, CK02a, AF04] two parties can exchange a
key without revealing their identities, and “anonymous” signatures protect
the signer’s identity at least as long as parts of the signed plaintext remain
hidden [YWDW06, Fis07].

The first definition of key-private public-key encryption has been given
by Bellare et al. [BBDP01]; the goal of the primitive was to attain receiver
anonymity. Abdalla et al. [ABN10] noted that also robustness is needed for
the PKE scheme to achieve this property, since otherwise an honest receiver is
unable to detect whether he is the intended recipient of a given ciphertext and
could obtain a bogus decryption. Mohassel [Moh10] analyzed game-based
security and anonymity notions for KEM-DEM encryption schemes, showing
that, for this particular type of composition, weak robustness together with
the key privacy of the KEM (key-encapsulation mechanism) and DEM (data-
encapsulation mechanism) components is sufficient to obtain a key-private
hybrid public-key encryption scheme. Our result implies that weak robust-
ness is sufficient even for universal composition. However, as shown recently
by Farshim et al. [FLPQ13], (even strong) robustness is insufficient in cer-
tain contexts, such as Sako’s auction protocol. The same concept as weak
robustness (i.e., that only the intended recipient must be able to decrypt a
ciphertext to a meaningful plaintext) lies at the core of incomparable public
keys as defined by Waters et al. [WFS03].

Pfitzmann and Waidner [PW85] described several flavors of anonymity in
communication across networks, including receiver anonymity. Later, Nagao
et al. [NMO08] described similar sender-anonymous channels and showed
that such channels can be related by reductions to other types, such as se-
cure channels and direction-hiding channels. Ishai et al. [IKOS06] provided a
broader investigation on how to bootstrap cryptographic functionalities using
anonymity, based on a particular type of sender-anonymous channel which
is similar to the notion of sender anonymity in the framework of Hevia and
Micciancio [HM08].

1.2.3 Unilaterally Authenticated Key Establishment

Many practical cryptographic protocols used on the Internet are designed for
a client-server setting where only the server has a certified public key. The
most prominent example for this use case is access to web servers, but pro-
tocols for sending or receiving mail or for accessing database or directory
servers often follow the same approach. In these settings, the client and the
server generate a cryptographic key which has only unilateral authentication
(cf. [Sho99, BM03]), i.e., the client is assured to share a key with the assumed

30 CHAPTER 1. INTRODUCTION

server; the server has no comparable guarantee. The client is later authen-
ticated by sending its credentials, often a username and password, over a
connection that is secured with the shared key.

Resources for Unilateral Key Establishment

The goal of a unilateral key-establishment protocol is to construct a unilateral
key, which is a resource that is denoted as = =• and guarantees the exclusive-
ness of the key only at the B-interface. On a high level, this resource provides
the guarantee that either it outputs the same random key both at the A- and at
the B-interface, or a key input at the E-interface is output at the B-interface,
while the A-interface remains inactive. This is the expected guarantee in a
setting where only B can send messages authentically, since the attacker can
always block the messages sent by A and engage in the protocol with B, ob-
taining a key. While party A, once it obtains a key, is guaranteed to share
a key with B, the party B has no such guarantee. Hence, without a further
authentication step, B cannot distinguish whether it shares a key with A or
with the attacker.

We show that the unilateral key is still a useful resource since A can be
authenticated later by, e.g., sending a password. The symbol = =• that we
use to denote the resource follows the notation of [MS96]. The marker “•”
signifies that the capabilities at the B-interface are exclusive to that interface:
If a key is output at the A-interface, this key is guaranteed to be shared with
the B-interface (and not the E-interface). There is no comparable guarantee
with respect to the A-interface, and hence there is no “•” on the left hand side
of the symbol = =•.

The most common authentication assumption made by practical proto-
cols is that a public-key infrastructure (PKI) is available and B has a certified
public key. This assumption corresponds to a single-message authenticated
channel / �−•, which allows B to send a single message authentically to all
potential communication partners A1, . . . , An, but allows the attacker to pre-
vent the delivery to some or all parties A1, . . . , An. The transmitted message
corresponds to B’s public key which is certified in the PKI and which is hence
transmitted authentically to all parties that can verify the certificate.

A Protocol for Unilateral Key Establishment

We show that the unilateral key is constructed from an authenticated com-
munication channel in one direction (say, from B to A) and an insecure com-
munication channel in the opposite direction by a simple protocol based on
a CPA-secure key-encapsulation mechanism (KEM). This construction can be

1.2. CONSTRUCTING RESOURCES FOR SECURE COMMUNICATION 31

described as
(− →,← −•) KEM−−−→ = =•.

The central idea underlying this protocol is simple: While the traditional ap-
proach to use a KEM in this scenario is to letB generate a key pair for the KEM
and send the key to A, our protocol works in the opposite direction. A gen-
erates a key pair and sends the public key to B, who then encapsulates a key
and sends the ciphertext together with the public key via the authenticated
channel. This approach allows A to check whether the key has been replaced
during the transmission to B. While protocols using the traditional approach
require the KEM to be CCA-secure, our protocol is secure if the KEM achieves
only CPA security (a much weaker requirement). This is proven explicitly in
Section 4.7.

We additionally show that if the parties A and B share a (low-entropy)
password, then this password can be used to authenticate the key by a sim-
ple protocol in which A sends the password encrypted to B. Denoting the
password as a resource Q, this corresponds to the construction

(= =•,Q,− →)
Send PWD−−−−−−−→ (•= =•,Q) .

The fact that the password resource Q appears also as a constructed resource
formalizes that the password can be used to authenticate multiple unilateral
keys.

Finally, we show how the authenticated channel← −• assumed by the key-
establishment protocol can be constructed if a public-key infrastructure, mod-
eled as a resource / �−• that allows B to send a single message authentically
to all potential partners, can be constructed in the sense that B obtains one
independent such channel to each potential partner. The protocol is based on
digital signatures and needs to ensure that each message is only accepted by
its intended receiver, and not by other (honest) parties. The achieved con-
struction is

(/ �−•, ← −n)
Sign−−−→ ← −•n ,

where the symbols ← −n and ← −•n indicate that there is one channel from B
to each Ai for each i ∈ [n].

Related Work

Various security models for key-establishment protocols have been proposed,
most of them in the game-based setting and with a focus on key-establishment
protocols with mutual authentication. A partial list includes [BR93, BJM97,
BCK98, BM98, CK01, LLM07]. Such security definitions come a priori without

32 CHAPTER 1. INTRODUCTION

composition guarantees, but specific results are known for some of the defini-
tions [CK01, BFWW11]. A simulation-based security definition has first been
given by Shoup [Sho99], still without general composition guarantees. A for-
malization in the UC framework [Can01], which guarantees composability, is
given by Canetti and Krawczyk [CK02b].

Only few security definitions apply to the case of unilateral authentica-
tion; one early formal treatment of this setting has been given by Halevi and
Krawczyk [HK99], with a focus on password-based protocols. Shoup [Sho99]
provides the first formal model that fully supports unilateral authentication,
and describes several protocols that achieve his security definition; one of
those (called A-DHKE) can be viewed as a specialization of our protocol using
a Diffie-Hellman based KEM. Goldberg, Stebila, and Ustaoglu [GSU13] extend
the so-called eCK-model [LLM07] to support unilateral authentication. The
protocol they provide is less efficient (three messages) and based on stronger
assumptions (random oracles), but is resilient to attacks not modeled in our
definition. Dodis and Fiore [DF13] independently proposed a protocol that
is similar to ours. In particular, it is also based on a CPA-KEM and a—there
interactive—mechanism for authentication. They also gave a simple game-
based security definition for unilateral key exchange. In recent work, Coretti
et al. [CMT13b] show that CCA-secure KEMs construct the unilateral key re-
source in a non-interactive scenario.

Generally, the game-based security models do not come with a proven
(or even explicitly stated) composition theorem. The achieved security is,
on a high level, comparable: The “key reveal” queries in game-based models
correspond in the construction to the fact that the distinguisher obtains (via
the interfaces of the honest parties) the keys in all sessions. (Intuitively, all
sessions can be considered “test sessions,” which is stricter than “key reveal”
but can be related by a hybrid argument.) The constructive notion of unilat-
eral key establishment does capture static corruption of clients (both passive
and active) because, in the unilateral setting, the attacker can initiate ses-
sions with the server by using the capabilities provided at the E-interface of
the resources. It does, however, currently not capture adaptive corruptions
and also does not model advanced properties such as perfect forward secrecy.
Note that since traditional game-based models do not come with a general
composition theorem, the guarantees provided to higher-level protocols (and
in particular the guarantees with respect to special properties) are, while from
an intuitive perspective certainly desirable, currently not formalized.

Most further definitions appear in papers on TLS: Morissey, Smart, and
Warinschi [MSW08] extend a standard game-based definition to the unilat-
eral case, but, as in other game-based models [HK99, Sho99, DF13, GSU13],
the guarantees this definition provides with respect to composition are un-

1.3. A CONSTRUCTIVE PERSPECTIVE ON THE TLS RECORD LAYER 33

clear. The recent analyses of the TLS handshake by Krawczyk, Paterson, and
Wee [KPW13] and Kohlar, Schäge, and Schwenk [KSS13] also consider the
case of unilateral authentication, but as the unmodified TLS handshake proto-
col is not secure with respect to “standard” security notions for key establish-
ment, they provide a combined security statement for the complete protocol.
Kohlweiss et al. [KMO+14] show that the TLS handshake protocol, without
the confirmation messages, constructs (essentially) a unilateral key in the
same setting as our protocol. Due to unfortunate design choices in the TLS
protocol and its inherently non-modular structure, the proof requires stronger
assumptions and a considerably more contrived analysis.

1.3 A Constructive Perspective on the TLS Record
Layer

Initially developed as the Secure Socket Layer (SSL) protocol [Hic95] for
securing the HTTP communication between web servers and browsers, the
SSL/TLS protocol family aims to provide end-to-end security for bidirectional
communication over the Internet and is nowadays used in many Internet pro-
tocols including, e.g., SMTP or IMAP for transmitting e-mails and LDAP for
accessing directories. The typical setting is to only authenticate the server
to the client, but client authentication is also possible if the client has a
certified public key. The protocol has suffered from several vulnerabilities
(e.g., [Rog95, Ble98, Vau02, KPR03, Bar04, RD09, AP12, ABP+13, AP13]);
this led to the development of a series of protocol versions and revisions of
the implementations, each one fixing flaws discovered in the previous version.
The most recent protocol version is known as Transport Layer Security (TLS)
version 1.2 [DR08]. A new protocol version 1.3 is currently being developed.

1.3.1 The TLS Protocol

The TLS protocol consists of two parts, the handshake—essentially a key-es-
tablishment protocol that can be used with either unilateral or mutual au-
thentication—and the record-layer protocol—which protects the transmission
of application data using the key obtained during the handshake.

The TLS handshake offers several alternative key-establishment methods
based on different cryptographic primitives. In each session, a particular
method is chosen depending on the implementation, the available public
keys, and the configuration. The handshake protocol contains several un-
fortunate design choices and, because of the non-standard use of schemes

34 CHAPTER 1. INTRODUCTION

and primitives, papers that analyze (parts of) TLS must generally choose be-
tween analyzing a modified version of the protocol, analyzing the original
protocol in idealized models (such as the random oracle model), or using
tailor-made computational assumptions. A partial list of papers analyzing
(parts of) the TLS handshake, each one considering a different subset or vari-
ant of the protocol, in different models, and under different assumptions,
is [JK02, MSW08, BFCZ12, FHM+12, GIJ+12, JKSS12, BFK+13a, BFS+13,
GKS13, KSS13, KPW13, KMO+14].

The main problem in analyzing the TLS protocol is that it was not designed
with provable security in mind; it is inherently non-modular and uses crypto-
graphic primitives in non-standard ways. Overall, it is fair to say that the TLS
protocol is at the same time not very efficient (for instance, the TLS hand-
shake begins only after the three-message TCP handshake, although a couple
of works [Lan10, LMM10, RCC+11, SHI+12] tried to resolve this issue) and
has a questionable cryptographic design. The wide use of the protocol is
caused by the fact that it is easy to integrate with existing infrastructure; it
is based on X.509 certificates and can be integrated by slight extensions of
protocols that anyway use a TCP connection for their communication.

1.3.2 Viewing the Record Layer Constructively

The two most widely used types of cipher suites in the TLS record-layer proto-
col are based on the AtE combination of a symmetric encryption scheme and
a MAC. There are two types of encryption schemes: The first one is a stream
cipher and is based in RC4. The second one is the CBC mode of a block cipher,
the most widely used cipher suites use 3DES or AES. The MAC schemes are
generally implemented as using HMAC with a hash function, the specification
mentions MD5, SHA-1, and SHA-256.

The initial protocol versions had several vulnerabilities, for instance due
to an erroneous chaining in CBC mode [Rog95, Bar04] or error messages
of and timing attacks on the MAC verification [Vau02, AP12, AP13]. These
vulnerabilities have lead to practical attacks, but have been fixed in the re-
cent versions of TLS. Recently, the doubts concerning the security of the
RC4 stream cipher have increased [ABP+13], which makes RC4-based cipher
suites a questionable choice. A comprehensive list of attacks can be found in
Meyer’s thesis [Mey14].

Constructively, the AtE transformation is viewed as first constructing a con-
fidential but malleable channel using the encryption scheme. The malleability
of the particular constructed channel depends on the encryption scheme: A
stream cipher leads to an XOR-malleability that allows the attacker to mod-
ify transmitted plaintexts by applying XOR-masks. The CBC-mode encryption

1.3. A CONSTRUCTIVE PERSPECTIVE ON THE TLS RECORD LAYER 35

leads to a type of malleability that resembles the block structure of CBC. The
subsequent construction step is achieved by the MAC scheme in combination
with a padding scheme and sequence numbers. This step constructs, from
the confidential channel and a secret key, a secure channel. This constructive
analysis is performed in detail in Chapter 5.

The analysis in our model excludes some, but not all, attacks that have
been found against earlier versions of TLS. The vulnerabilities caused by in-
correct CBC chaining pointed out by Rogaway [Rog95] and Bard [Bar04],
which have later been exploited in the famous BEAST attack [DR11], would
have been captured. The so-called CRIME attack, based on the observation
that compression ratios for different messages leak information about the
plaintext [Kel02] and the original padding oracle attacks [Vau02] are cur-
rently not captured because the corresponding parts of the protocol are not
analyzed, but would directly show up once compression or error messages are
included in the analysis. (This means extending the current analysis, in the
same model, to further parts of the protocol.) Attacks which exploit different
processing times of algorithms depending on the internal state of the receiver
like those shown by AlFardan and Paterson [AP12, AP13] are inherently not
covered by the definitions; they would require a modeling of computation
time.

1.3.3 Related Work

The two most commonly used cipher suites in the TLS record-layer protocol
are based on the AtE combination of a symmetric encryption and a message
authentication code. While AtE is not secure for all schemes [BN00, Kra01],
the combinations of schemes used in TLS is in principle sound. The first
result in this direction was shown by Krawczyk [Kra01], who proved that
CBC-mode encryption and stream ciphers together with a strongly unforge-
able MAC are indeed sufficient. The analysis, however, deviated from the TLS
protocol in two aspects: The proof uses a size restriction on the MAC which is
not satisfied by the real protocol, and padding in CBC mode is not considered.
Our analysis in the conference paper [MT10] and in Chapter 5 handles these
issues correctly. The subsequent work of Paterson, Ristenpart, and Shrimp-
ton [PRS11] follows, as [Kra01], a game-based approach, but in contrast to
our analysis even takes into account the (optional) variable-length padding
of TLS (designed to hide the length of transmitted messages). The bounds
proven in all three works are roughly comparable, we provide more details in
Chapter 5.

36 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

This chapter introduces notation and fundamental concepts that are prereq-
uisites for the material in the subsequent chapters. Section 2.1 introduces
general notation that is used throughout the thesis. Section 2.2 describes
Maurer’s abstract reduction theory, which abstracts the reduction concept
from complexity theory and which we use to define and prove the security
of schemes that are based on computational assumptions. The concept of and
foundational statements about random systems, which model probabilistic
discrete behavior, are introduced in Section 2.3. Finally, Section 2.4 contains
descriptions and definitions of several types of cryptographic schemes along
with formalizations of game-based security definitions in terms of random
systems.

2.1 Notation

We describe general symbols and writing conventions used throughout the
thesis in Section 2.1.1. In Section 2.1.2, we discuss a generalized concept of
tuples in which the components are labeled by elements of arbitrary sets, and
which underlies several of our definitions.

2.1.1 General Notation

We use the notation N = {1, 2, . . .} for positive integers and for each n ∈ N,
we write [n] := {1, . . . , n}. We denote by R the set of all reals, and use the
notation [r1, r2] for r1, r2 ∈ R, r1 ≤ r2 to denote the interval between r1

and r2, formally [r1, r2] := {r ∈ R : r1 ≤ r ≤ r2}. For sets X and Y, we denote
the set of all functions f : X → Y as YX . For a set S, we denote the powerset

37

38 CHAPTER 2. PRELIMINARIES

of S, i.e. the set of all subsets of S, by 2S . If S is finite, we denote by |S| the
cardinality of S, that is, the number of elements in S.

Function names that consist of multiple characters are written in straight
serif font such as enc. Special constants such as Boolean values are written in
underlined sans-serif font such as true, false.

Probability theory. In a given random experiment, the probability that an
event E occurs is denoted by P(E); the random experiment, if not clear from
the context, will be specified in the superscript of P. The notation PX(x) for
a random variable X with values in X and a value x ∈ X then describes the
probability P(X = x). For another random variable Y with values in Y and a
value y ∈ Y, PX|Y (x, y) is defined as P(X = x | Y = y), that is, the probability
of the event X = x under the condition that Y = y. If a random variable X is
chosen uniformly at random from a set X , this is denoted X ∈R X .

Algorithms and pseudo code. We specify algorithms in pseudo code, using
bold-face font such as if to denote structural elements of the language such
as branching statements and procedure headers. The notation y ← x de-
notes that the value x is assigned to the variable y. In case this assignment is
probabilistic (because, e.g., the assigned value is the output of a probabilistic
function F) we write x←$ F (x). If an algorithm chooses a value x uniformly
at random from a set X , we write x←$ X . We generally use the symbol “�” to
denote an “error” output of an algorithm, and “�” to indicate that a variable
is undefined.

2.1.2 Sequences and Tuples

For two values x, y ∈ X , we write (x, y) ∈ X 2 for the ordered pair consisting
of x and y. More generally, for n ∈ N and values x1, . . . , xn ∈ X , we use the
notation xn = (x1, . . . , xn) = (xi)1≤i≤n ∈ Xn to denote the finite sequence,
or n-tuple, of values.

Strings. We use the standard notation X ∗ to denote the set of all finite se-
quences with arbitrary length and values in X , formally X ∗ :=

(⋃
n∈N Xn

)
∪

{ε}, where ε denotes the unique string of length 0. We denote by |x| the
length of the string x, with |ε| = 0. The concatenation of two strings is de-
noted by the operation “.” that is defined for two strings x = x1 · · ·xn and
x′ = x′1 · · ·x′n′ in X ∗ as (x, x′) 7→ x.x′ := x1 · · ·xnx′1 · · ·x′n′ .

Binary operations on bits can be extended to binary operations on bit
strings x = x1 · · ·xn := (x1, . . . , xn) ∈ {0, 1}∗. For instance, consider the XOR-

2.1. NOTATION 39

operation “⊕,” which is extended to bit strings by defining, for x = x1 · · ·xn
and x′ = x′1 · · ·x′n, the operation

⊕ : (x, x′) 7→ x⊕ x′ := (x1 ⊕ x′1) · · · (xn ⊕ x′n).

Named tuples. Formally, a pair (x, y) ∈ X 2 can be considered as the set
{(1, x) , (2, y)}, which describes a function [2] → X . This justifies the alter-
native notation X [2] = X 2. An n-tuple with values in X can analogously be
seen as a set of pairs (i, xi) ∈ [n] × X which is a function in the sense that
for each label i ∈ [n] there is exactly one such pair in the set. More gener-
ally, we will want to consider tuples for which the labels are not elements
of [n] for n ∈ N, but elements of arbitrary sets. Let Λ be some (discrete)
label set. We write the Λ-tuple with elements xλ for λ ∈ Λ as 〈xλ〉λ∈Λ. We
denote the set of all Λ-tuples with values in X as XΛ. Note that this would
correspond to using the notation X [n] for (standard) n-tuples. The notation
(x1, . . . , xn) = (xi)1≤i≤n ∈ Xn is to be understood as specifying a set of
pairs {(1, x1) , . . . , (n, xn)} in this sense.

The tuples with labels in Λ as described above specify a value for each λ ∈
Λ. We extend the formalization to also capture “partial” tuples where some
labels are not associated with a value. For such a tuple x, we write suppx for
the support of x, i.e., the set of all labels λ ∈ Λ for which a value is defined
in x. We then use the notation X (Λ) for the set of all partial tuples x with
values in X and labels in Λ for which suppx is finite, formally

X (Λ) :=
⋃

L⊆Λ,|L|∈N

XL.

For x ∈ X (Λ) : suppx = L ⇐⇒ x ∈ XL.
For two partial tuples x1, x2 ∈ X (Λ) with disjoint support, i.e., suppx1 ∩

suppx2 = ∅, we define the joined tuple x1∪x2 as the union of the sets of pairs.
Consequently, we use the notation

⋃
i∈[n] xi for a family x1, . . . , xn of partial

tuples with disjoint label sets. We denote by 〈x〉λ the tuple that contains only
a single element x with label λ (as a set, this is {(λ, x)}).

Mappings on tuples. The composition of two simple functions f : X → Y
and g : Y → Z is defined in the obvious way as g ◦ f : X → Z, x 7→ g(f(x)).
If the mappings are defined on tuples, i.e. f : XΛ → Y and g : YΛ → Z,
the composition must define which argument of g is to be defined to take the
output of f . Hence, for each λ̄ ∈ Λ one defines a composition as

g ◦λ̄ f : YΛ\{λ̄} ×X λ̄.Λ → Z, y ∪ x 7→ g(y ∪ 〈f(x)〉λ̄). (2.1)

40 CHAPTER 2. PRELIMINARIES

2.2 Abstract Reduction Theory

The security of most practical cryptographic schemes is based on computa-
tional assumptions. A security proof for such a scheme shows that if there
is an adversary or attacker breaking the cryptographic scheme, then one can
immediately translate this attacker into a solver for some computational prob-
lem. If one assumes that the computational problem is difficult to solve,
then one can conclude that the cryptographic scheme is difficult to break.
In complexity-theoretic terms, this describes a reduction from the computa-
tional problem assumed to be hard to the problem of breaking the security
of the cryptographic scheme. Maurer developed an abstract reduction the-
ory [HMS+13, Mau14] based on the concept of abstract systems as described
in Section 1.1.2, which we include here for completeness.

The aim of abstract reduction theory is to describe both the computational
problems and the solvers for these problems in terms of systems that are con-
nected via their interfaces. This formulation is independent of a particular
computational model and the results apply to any model that is shown to sat-
isfy the axioms of abstract systems; one can specify computational problems
and show reductions between these problems generically. The advantages of
this approach are that certain reductions are described and proved abstractly
without providing a concrete implementation in a computational model, and
that the statements directly translate to various different types of computa-
tional models.

A computational problem is described by one or more systems and a per-
formance measure that is associated with the problem and maps each solver
for the problem to a performance value (often in [0, 1]) that describes how
well the considered solver actually solves the problem. For instance, a search
problem in complexity theory can be seen as a system that provides an in-
stance of the problem to the solver, the solver is a (probabilistic) Turing ma-
chine or algorithm that obtains the instance and outputs a candidate solution,
and the performance is the probability with which the solution provided by
the solver is correct. The systems are connected by providing the concrete
instance generated by the system describing the problem as an input to the
solver. The performance measure, in the probabilistic case, is the probability
that a candidate solution output by the solver is correct.

A reduction from a computational problem P to a computational prob-
lem P ′ is a function φ that maps each solver for the problem P ′ to a solver
for the problem P . The quality of the reduction is measured in terms of how
the performance of the solvers translates: For a function ρ : [0, 1]→ [0, 1], the

2.2. ABSTRACT REDUCTION THEORY 41

function φ is a ρ-reduction if for all solvers S,

εP ′(S) ≤ ρ(εP (φ(S))),

where εP is the performance function of problem P and εP ′ is the perfor-
mance function of problem P .

If the security of a cryptographic scheme is based on multiple computa-
tional problems, then a security proof corresponds to showing a (simulta-
neous) reduction from all these computational problems to the problem of
breaking the scheme. This more general type of reduction is defined below.

Definition 2.1. Let L ⊆ Λ. Let Pλ for λ ∈ L and P ′ be computational
problems with associated performance functions εPλ and εP ′ , respectively.
Let ρ :

∏
λ∈L [0, 1] → [0, 1] be a monotone function. A tuple 〈φλ〉λ∈L of func-

tions mapping solver systems to solver systems is a ρ-reduction from 〈Pλ〉λ∈L
to P ′ if for every solver S for P ′,

εP ′(S) ≤ ρ
(
〈εPλ(φλ(S))〉λ∈L

)
.

�
The condition in Definition 2.1 is more compactly written as

εP ′ ≤ ρ
(
〈εPλ ◦ φλ〉λ∈L

)
,

with the interpretation that a solver S is given as an argument to every func-
tion in the tuple on the right-hand side.

Composition of reductions. Two reductions are composed in the obvious
way; we first describe this (for ease of notation) for the simplified setting
where reductions are from a single problem to another single problem. Let P ,
P ′, and P ′′ be computational problems with associated performance mea-
sures εP , εP ′ , and εP ′′ . Let ρ, ρ′ : [0, 1] → [0, 1] and φ, φ′ be mappings such
that φ is a ρ-reduction from P to P ′ and φ′ is a ρ′-reduction from P ′ to P ′′.
More formally:

εP ′′ ≤ ρ′ ◦ εP ′ ◦ φ′ and εP ′ ≤ ρ ◦ εP ◦ φ.

Then, by monotonicity, the fact that φ′ maps systems to systems, and the
associativity of function composition,

εP ′′ ≤ ρ′ ◦ εP ′ ◦φ′ ≤ ρ′ ◦ (ρ ◦ εP ◦φ) ◦φ′ ≤ (ρ′ ◦ ρ) ◦ εP ◦ (φ ◦φ′),

i.e., φ ◦ φ′ is a (ρ′ ◦ ρ)-reduction from P to P ′′.
To extend the above statement to the general type of reduction described

in Definition 2.1, we describe how the performance and solver mappings are
composed.

42 CHAPTER 2. PRELIMINARIES

Definition 2.2. Let L ⊆ Λ, 〈φλ〉λ∈L and ρ be as in Definition 2.1. For a label
λ̂ ∈ L, a set L′ ⊆ Λ, and a function ρ′ :

∏
λ′∈L′ [0, 1] → [0, 1], let the tuple

〈φ′λ〉λ′∈L′ be a ρ′-reduction. Then, the composition of 〈φλ〉λ∈L and 〈φ′λ〉λ′∈L′
via λ̂ is defined as

〈φλ〉λ∈L ◦λ̂ 〈φ
′
λ〉λ′∈L′ := 〈φλ〉λ∈L\{λ̂} ∪

〈
φλ̂ ◦ φ

′
λ′
〉
λ̂.λ′∈λ̂.L′ ,

where λ̂.L′ :=
{
λ̂.λ : λ ∈ L′

}
. �

The composition of the two reductions is a (ρ ◦λ̂ ρ
′)-reduction, where the

composition of ρ and ρ′ is defined as in equation (2.1).
There are two specific types of computational problems that are relevant

in the setting we consider. The first one, a game, formalizes the difficulty of
providing a correct solution to a given problem. The second one, a distinction
problem, formalizes that the difficulty of distinguishing between two given
objects.

Abstract games. An abstract game captures a type of problem in which a
solver (or game winner) is connected to a game and wins if it succeeds to
provoke a certain condition. Abstract games capture search problems (the
solver wins if it outputs the correct solution to the problem) or cryptographic
games that capture properties such as the unforgeability of signatures (the
solver wins if it forges a signature) or the hardness of inverting a trapdoor
one-way permutation (the solver wins if it finds a preimage). In the deter-
ministic case, the performance of a given winner w in a game g is either 0
(if the winner fails in winning the game) or 1 (if the winner succeeds); this
is denoted as wg = 0 or wg = 1, respectively. If the game or the winner are
probabilistic, the performance of the winner is defined as the probability with
which the game is won.

Definition 2.3. An abstract game is a single-interface system G. The game-
winning performance of W for G is defined as

JGK (W) = Γ (WG) := P(WG = 1),

for each single-interface system W . �

The term JGK is a short notation for the performance measure that is as-
sociated to the game G, and allows to write reduction statements involving
games in a compact way. In the following, we describe a (trivial) reduction
which is used repeatedly in the remainder of the thesis. The lemma states that
if one considers a two-interface system R that is placed between the game G

2.2. ABSTRACT REDUCTION THEORY 43

and the winner W , then one can either consider R either as being part of
the winner such that WR is a winner for game G, or one can equivalently
consider R as being part of the game such that W is a winner for game RG.
The lemma follows immediately since we assume that the system algebra is
composition-order invariant, that is, it does not matter in which order systems
are composed. (In the case of the lemma, we use (WR)G = W (RG).) The
lemma is instrumental for proving reductions between different problems.

Lemma 2.4. Let G be an abstract game. Then, for any two-interface system R:

JRGK = JGK ◦ (·R),

where (·R) is considered the mapping W 7→WR.

Abstract distinction problems. The second type of problem we consider is
called a distinction problem and formalizes problems where the solver has to
distinguish between two objects. Formulated in terms of abstract systems, the
objects are single-interface systems and connect to the solver (often called dis-
tinguisher) via this interface. Distinguishers are also single-interface systems,
and the composition of a distinguisher with another single-interface system
determines a bit (which can be viewed as the “output” of the distinguisher).
In the deterministic case, this means that for a distinguisher d and a system s
we can write ds = 0 or ds = 1. In the probabilistic case, we are interested
in the difference of probability that a certain distinguisher achieves when it
is connected to either of two different systems, that is, for a distinguisher D
and two single-interface systems S0 and S1, the distinguishing advantage is
defined as the absolute value of the difference in probability to output 1 when
connected to S0 or S1, respectively.

Definition 2.5. A distinction problem consists of a pair (S0, S1) of single-in-
terface systems and is denoted as (S0 | S1), together with a mapping for the
distinguishing advantage of each distinguisher D,

J(S0 | S1)K (D) = ∆D (S0, S1) := |P(DS0)− P(DS1)| .

�

Note that the distinguishing advantage for a given distinguisher D can be
considered a distance measure on the set of single-interface systems and sat-
isfies the triangle inequality. More formally, for a distinguisher D and three
single-interface systems S0, S1, and S2, from the definition of the distinguish-
ing advantage and the triangle inequality for the absolute value it follows
that

44 CHAPTER 2. PRELIMINARIES

∆D (S0, S2) = |P(DS0 = 1)− P(DS2 = 1)|
= |P(DS0 = 1)− P(DS1 = 1) + P(DS1 = 1)− P(DS2 = 1)|
≤ |P(DS0 = 1)− P(DS1 = 1)|+ |P(DS1 = 1)− P(DS2 = 1)|
= ∆D (S0, S1) + ∆D (S1, S2) .

Additionally, the distinguishing advantage is symmetric in the sense that for
all systems S0 and S1:

∆D (S0, S1) = ∆D (S1, S0) ,

and for all systems S it holds that ∆D (S, S) = 0. Altogether, this means that
the distinguishing advantage for a fixed distinguisher D is a pseudo metric on
the set of single-interface systems.

We prove the lemma which is is an analogue to Lemma 2.4 in the case
of distinction problems. The proof is again based on the composition-order
invariance of the system algebra. The lemma is again useful for proving re-
ductions between computational problems.

Lemma 2.6. Let P = (S0 | S1) be a distinction problem. Then, for any two-
interface system R:

J(RS0 | RS1)K = J(S0 | S1)K ◦ (·R),

where (·R) is considered the mapping D 7→ DR.

Proof. By definition and the composition-order invariance of the two-interface
systems,

J(RS0 | RS1)K (D) = |P(D(RS0) = 1)− P(D(RS1) = 1)|
= |P((DR)S0 = 1)− P((DR)S1 = 1)|
= J(S0 | S1)K (DR)

= (J(S0 | S1)K ◦ (·R)) (D),

which concludes the proof.

2.3 Random Systems

Probabilistic discrete systems that obtain a sequence of inputs and respond
to each input by providing an output are exactly captured by the concept of

2.3. RANDOM SYSTEMS 45

random systems as introduced by Maurer [Mau02]. Within a random experi-
ment, each input to or output from the system is a random variable with a spe-
cific probability distribution. The behavior of such a discrete system can hence
be described as the conditional distribution of the outputs it provides, given
the previous history, i.e., all inputs it obtained and all previously provided out-
puts. In this section, we recall the definition of and foundational statements
about random systems from the literature [Mau02, MPR07, Mau13].

Many cryptographic primitives like block ciphers, MAC schemes, or ran-
dom functions can be described as discrete systems that take a sequence
X1, X2, . . . ∈ X of inputs and generate, for each input Xi ∈ X , an output
Yi ∈ Y. Each output Yi may depend probabilistically on all the previous inputs
Xi = (X1, . . . , Xi) as well as all the previous outputs Y i−1 = (Y1, . . . , Yi−1).
For a discrete system S with inputs in X and outputs in Y, this is captured
by a conditional probability distribution, which will be denoted by pSYi|XiY i−1

where the superscript indicates the system considered. Each conditional prob-
ability distribution involved in the definition of the random system S is actu-
ally a function

pSYi|XiY i−1 : Y × X i × Yi−1 → [0, 1],

where for all choices of the arguments xi and yi−1 the sum of the function
values over the choices of yi equals 1. This motivates the formal definition of
a random system.

Definition 2.7 ([Mau02]). An (X ,Y)-random system S is a (possibly infi-
nite) sequence of conditional probability distributions pSYi|XiY i−1 for all i ≥ 1,
where Xj ∈ X and Yj ∈ Y for all j ≥ 1. �

An (X ,Y)-random system S considered in isolation does not describe a
random experiment since the distribution of the inputs to the system S is not
defined. For this reason, the conditional distributions in a random system are
denoted by a lower-case letter p instead of an upper case letter P, which we
use for probability distributions in a random experiment.

It is sometimes convenient to use an alternative description of a random
system S, namely the sequence of conditional distributions pSY i|Xi , where

pSY i|Xi :=

i∏
j=1

pSYj |XjY j−1 .

Note that the conditional distribution pSY i|Xi “contains” the conditional dis-
tributions pSY j |Xj for all j < i and hence the above description of a system is
redundant. The conditional distribution pSY i|Xi must satisfy a consistency con-
dition which ensures that Yj for j < i does not depend onXj+1, Xj+2, . . . , Xi.

46 CHAPTER 2. PRELIMINARIES

Monotone binary outputs (MBOs) and games. A concept that is important
in several contexts is an output of a system which is binary and monotone,
that is, it is initially 0, and after potentially switching to 1 at some point,
remains 1. This concept will be used for showing that systems are “almost”
equivalent by specifying conditions on systems and formulating that the sys-
tems are equivalent as long as the respective MBO is 0; this allows to bound
the distinction advantage by the probability of provoking the MBO to be 1.
MBOs are also useful to formalized statements which are parametrized in the
number of queries made to a system; this is achieved by “masking” the outputs
of a system once the MBO becomes 1.

Definition 2.8 (from [MPR07]). For a (X ,Y × {0, 1})-system S the binary
component Ai of the output (Yi, Ai) is called a monotone binary output (MBO)
if Ai = 1 implies Aj = 1 for j ≥ i. For such a system S with MBO we define
two derived systems:

1. S− is the (X ,Y)-system resulting from S by ignoring the MBO.

2. Sa is the (X ,Y × {0, 1})-system which masks the Y -output to a dummy
symbol as soon as the MBO turns to 1. More precisely, the following
function is applied to the outputs of S:

(y, a) 7→ (y′, a) where y′ =

{
y if a = 0,
⊥ if a = 1.

�

For a system S and an additional MBO A1, A2, . . . defined on S, we denote
the system S with the MBO by Ŝ (where the exact MBO is usually explicitly
described or clear from the context), and clearly Ŝ− = S. In general we
will be interested in systems with multiple monotone binary outputs, where
each output may serve a particular purpose. We will often call a system with
respect to a specified MBO a game, and the MBO formalizes “winning the
game.”

Environments for random systems. Random systems can be seen as sys-
tems which only have a single interface and take inputs from the set X and
respond with outputs in the set Y. Random systems define a random exper-
iment only together with an environment which determines the distribution
of the input random variables. Intuitively, such an environment E for an
(X ,Y)-system S corresponds to a (Y,X)-system which is one query ahead:
the output Xi of E corresponds to a query made to the random system S,
where Xi depends on the given responses Y i−1 of the system S and on the
previous queries Xi−1 made to it.

2.3. RANDOM SYSTEMS 47

Definition 2.9 ([Mau13]). An (X ,Y)-environment E is a (possibly infinite)
sequence of conditional probability distributions pEXi|Y i−1Xi−1 for i ≥ 1, where
Yj ∈ Y and Xj ∈ X for all j ≥ 1. �

An (X ,Y)-random system S and an (X ,Y)-environment E together define
a random experiment ES in which the distributions of all variablesX1, X2, . . .
and Y1, Y2, . . . are defined: The environment E defines the distribution of X1

via PES
X1

= pEX1
, given the distribution of X1 the system S defines the joint

distribution with Y1 via PES
X1Y1

= pEX1
· pSY1|X1

; more generally

PES
XiY i = pEXi|Y i−1 · pSY i|Xi .

Distinguishers for random systems, the distinguishing advantage, and
the game winning performance. A special type of environment, namely
one for which an additional binary random variable W is defined, will serve
as distinguisher for random systems. The distinguishing advantage for a dis-
tinguisher D and two systems S and T is then defined as the difference in
probability for this variable to be 1 between the interactions of D with S
or T.

For the random experiment to be well-defined, this means that the value of
the bit W must be determined after some finite number of interactions. There
are several valid ways in which this can be enforced, such as requiring the
distinguisher to output the value after some fixed number of steps, or defining
the system to stop after some fixed number of steps (and then defining the
value as a predicate over the transcripts).

To capture a more general type of conditions than just a static number of
interactions, we use a different definition. We let S (resp. T) be a system
with an additional “stopping” monotone binary output; while this MBO is 0,
the system and the distinguisher interact normally. When the MBO switches
to 1, the distinguisher determines the output bit without obtaining further
outputs.1 The restriction on a fixed number q of queries can be formalized by
defining a constant MBO A1, A2, . . . , Aq = 0 and Aq+1, Aq+2, · · · = 1.

Definition 2.10. An (X ,Y)-distinguisher D is an (X ,Y)-environment which
has an additional binary output W , i.e., a family of distributions pDXi|Xi−1Y i−1

and pDWi|XiY i−1 , where each Wi is a binary random variable. The distinguish-
ing advantage of D for two (X ,Y × {0, 1})-systems S and T (where the binary

1In terms of strictness, this is equivalent to explicitly blocking the outputs of the system and
letting the distinguisher decide when it stops as defined with the notation Sa, as defined by
Maurer et al. [MPR07].

48 CHAPTER 2. PRELIMINARIES

component is monotone) is defined as

∆D (S,T) :=
∣∣PDS(W = 1)− PDT(W = 1)

∣∣ ,
where PDS(W = 1) denotes the probability that the binary output Wq of D
is set to 1 (and analogously with T) if the MBO of S becomes 1 in step q
(analogously with T).2 �

In the composition of an environment and a game, we are usually inter-
ested in the probability of the game’s “winning” MBO to become 1. Recall that
the game outputs one bit Ai in each step such that the sequence A1, A2, . . . is
monotone. We define the random variable A for the MBO analogously to the
random variable W above: We assume that the game has an additional “stop-
ping” MBO that determines the particular step in which the value of the “win-
ning” MBO is considered. If the “stopping” MBO becomes 1 in step i, then A
is equal to Ai. This results in the following definition of a game winning
advantage for a game winner W (which formally is an (X ,Y)-environment).

Definition 2.11. For a (X ,Y×{0, 1})-random system S with MBO A1, A2, . . .
and for an environment W, we denote with Γ (WS) the probability that W
wins the game:

Γ (WS) := PWS(A = 1).

�

Relation between games and distinction problems. We describe two tech-
niques for bounding the distinguishing advantage for the case of random sys-
tems, which are both based on the notion of game winning. If two systems
behave equivalently unless a certain condition occurs, then the distinguishing
advantage can be bounded by the probability of provoking that condition. In
more detail, let S and T be two systems on which additionally an MBO is
defined (hence, they are formally discrete games). Then these two systems
are said to be equivalent as games if they are equivalent as long as the MBOs
defined on the systems remain 0.

Definition 2.12. Two (X ,Y × {0, 1})-systems S and T with MBOs are equiv-
alent as games, denoted S

g
≡ T, if, for i ≥ 1,

pSY i,Ai=0|Xi = pTY i,Ai=0|Xi .

�
2Formally, this can be defined by taking the sum of probabilities for Aq = 0∧Aq+1 = 1∧Wq+1

over all q ∈ N.

2.3. RANDOM SYSTEMS 49

If the two systems have the same distributions for all outputs Yi in the
case Ai = 0, then this implies that the probability of the event Ai = 1 is also
the same for each game. This is formalized in the following Lemma, which is
taken from Maurer [Mau13] and states that if two games are equivalent, the
probability of winning is the same.

Lemma 2.13 ([Mau13, Lemma 1]). If S
g
≡ T for two (X ,Y × {0, 1})-systems

S and T with MBOs, then
JSK = JTK ,

where JSK and JTK describe the performance in terms of provoking the MBO in
the respective games.

The following lemma then provides us with the desired bound on the dis-
tinguishing advantage: if two systems are equivalent as games, then the dis-
tinguishing advantage is upper bounded by the probability of winning the
games. This lemma, which has been proven by Maurer [Mau02], is instru-
mental for many of our proofs.

Lemma 2.14 ([Mau13, Lemma 2]). If S
g
≡ T for two (X ,Y × {0, 1})-systems

S and T with MBOs, then
q(

S−
∣∣ T−

)y
≤ JSK .

A concept which is similar in spirit to game equivalence is that of condi-
tional equivalence. A system S with an MBO is said to be conditionally equiv-
alent to a system T without an MBO if the system S, conditioned on the MBO
being 0, is equivalent (as a system) to T.

Definition 2.15. Let S be an (X ,Y × {0, 1})-system with MBO and T be an
(X ,Y)-system. Then S is conditionally equivalent to T, denoted S |≡ T, if, for
i ≥ 1,

pSY i|Xi,Ai=0 = pTY i|Xi ,

where the equality holds on all arguments for which both terms are defined.
�

The most important application for conditional equivalence, as for game
equivalence, is to bound the advantage in distinguishing two systems. In con-
trast to Lemma 2.14, however, the advantage is even bounded by the proba-
bility of provoking the condition “blindly,” i.e., independently of the outputs
of the system. A consequence of this theorem is that the best distinguisher
for S and T is non-adaptive.

50 CHAPTER 2. PRELIMINARIES

Theorem 2.16 ([Mau13, Theorem 3]). If for (X ,Y)-systems S and T one can
define an MBO A1, A2, . . . such that Ŝ |≡ T, then

J(S | T)K ≤
r
~TŜ

z
,

where ~T is the system that answers the queries (as T) at the left interface and
forwards the same queries to the right interface.3

2.4 Cryptographic Schemes and Security Proper-
ties

In the literature, a cryptographic scheme us usually described as a tuple of
algorithms, and a security definition in the context of secure communication
formalizes a property of such a scheme. Each property is then defined by a
game which involves the scheme, and the scheme is said to have the property
if no efficient adversary can win the game. In this section, we formalize
several notions from the cryptographic literature in a way that is compatible
with the remainder of the thesis.

2.4.1 Game-based Definitions

In the literature, game-based definitions specify a property of a cryptographic
scheme based on an interaction between two (hypothetical) entities: the
game (or challenger) and the adversary. During this interaction, the adversary
issues certain “oracle queries” to the challenger; these queries model the use
of the scheme in applications. The adversary’s goal is specified by the game,
and could be, e.g., forging a message or extracting useful information about
the plaintext from a ciphertext. If this game cannot be won by any (efficient)
adversary, then the scheme is secure against the considered type of attack.
The adversary is often formalized as a Turing machine that has access to a set
of oracles formalizing the challenger.

The literature often distinguishes between two types of “games.” The first
one captures that a certain task be infeasible, such as forging a signature or
inverting a one-way function. This type of game corresponds to a random
system with an MBO as described in Section 2.3, and the performance of
the adversary is measured similarly to Definition 2.11. The second type of
game formalizes the problem of distinguishing between two scenarios, such

3For a fixed distinguisher D, the notation JDTK is used for the system D~T by Mau-
rer [Mau13] and defined in [Mau13, Definition 7]. We chose a different notation because ~T
can be considered a system that is defined even without connecting a distinguisher to it.

2.4. CRYPTOGRAPHIC SCHEMES AND SECURITY PROPERTIES 51

as distinguishing between ciphertexts for different messages. This type of
problem corresponds, in our model, to a distinction problem in the spirit of
Definition 2.10.

Since the majority of the existing literature considers “closed classes” of
adversaries, such as algorithms that run in polynomial time, it makes sense
to state and prove that a scheme “has a certain property.” In our reduction-
ist view on security, this is not possible, and we describe the properties by
the problem that is supposed to be solved to break the property, and the as-
sociated performance measure. A security proof is then stated as an explicit
reduction that maps every distinguisher from the random experiment defining
a construction to a solver/adversary in the corresponding game. In this view,
restrictions on the adversary, such as the maximum number of queries that can
be used to win a game, are a property of the game, not the solver/adversary
that tries to win the game. This restriction is formalized, as described in
Section 2.3, as a special MBO that becomes 1 once the number of queries
exceeds the specified bound. The obtained definition is formally equivalent
to the standard formulation; however, it integrates smoothly with the type of
security statement we are interested in.

In the remainder of the section, we describe security notions from the liter-
ature by pseudo-code descriptions of random systems, i.e., sequences of con-
ditional distributions pXi|XiY i−1 . The description is to be interpreted as fol-
lows. Upon the first input X1, the game initially evaluates the described init
procedure. The input X1, if non-empty, is then interpreted as a procedure call
with corresponding parameters (using some fixed encoding of the procedure
name and the parameter list), and the system returns as output Y1 the value
prescribed by the procedure (or the output of init if the input was empty). All
following inputs X2, X3, . . . are processed analogously, but without the eval-
uation of the init procedure. For games that are formalized with an MBO,
there is a specific variable W and setting W ← 1 in a procedure effects that
the MBO is set.

2.4.2 Message Authentication Codes

The purpose of a message authentication code (MAC) is to authenticate mes-
sage transmissions in a setting where two parties already share a secret key.
MACs are often deterministic, i.e., one computes a function on the secret key
and the message that is to be authenticated. The computed value, often called
tag, is then sent along with the message, and the receiver can check, again
using the secret key, whether a received pair of message and tag is valid.

52 CHAPTER 2. PRELIMINARIES

Definition 2.17. A MAC scheme with key space4 K, message spaceM, and tag
space T is a pair of functions MAC = (mac, check), such that mac : K×M→
T and check : K ×M× T → {true, false}. A MAC is correct if for all k ∈ K
and m ∈M, check(k,m,mac(k,m)) = true. �

A MAC scheme is secure if, intuitively, no adversary can produce valid
message-tag pairs, and this intuition is usually captured in a game [BCK96].
There are two different flavors of MAC security.

Weak unforgeability under chosen-message attack (WUF-CMA). Weak
unforgeability, intuitively, means that no (efficient) adversary, even with ac-
cess to an oracle that produces valid tags for chosen messages, will be able to
generate a valid tag for a message for which it did not obtain a valid tag from
the oracle before. System 1 describes the weak unforgeability game. The tag-
oracle allows the adversary to obtain valid tags for chosen messages, and the
vrf -oracle allows to check for the validity of tags. As pointed out by Bellare
et al. [BGM04], it is important to allow the adversary multiple verification
queries.

System 1 WUF-CMA Game GWUF-CMA(MAC)

1: procedure init
2: k←$K
3: B ← ∅
4: end procedure

5: procedure tag(m)
6: t← mac (k,m)
7: B ← B ∪ {m}

8: return t
9: end procedure

10: procedure vrf(m, t)
11: b← check (k,m, t)
12: W ←W ∨ (b ∧ (m /∈ B))
13: return b
14: end procedure

The weak unforgeability game for a MAC scheme MAC together with an
MBO that becomes 1 as soon as more than q ∈ N queries have been made
to one of the tag or vrf oracles is denoted as GWUF-CMA

q (MAC), and the
performance of an adversary in breaking MAC within q queries is defined
by

q
GWUF-CMA
q (MAC)

y
.

Strong unforgeability under chosen-message attack (SUF-CMA). Strong
unforgeability, intuitively, means that no (efficient) adversary, even with ac-

4Usually, M = {0, 1}∗, K = {0, 1}k for some k ∈ N, and T = {0, 1}t for some t ∈ N.

2.4. CRYPTOGRAPHIC SCHEMES AND SECURITY PROPERTIES 53

cess to an oracle that produces valid tags for chosen messages, will be able to
generate a valid message-tag pair other than the pairs obtained from the ora-
cle. The difference to weak unforgeability is that if there was a query tag(m)
with a response t, then strong unforgeability means that (m, t′) for t 6= t′ ∈ T
with check(k,m, t′) = true would be considered a forgery, whereas this is not
the case for weak unforgeability. System 2 describes the strong unforgeability
game.

System 2 SUF-CMA Game GSUF-CMA(MAC)

1: procedure init
2: k←$K
3: B ← ∅
4: end procedure

5: procedure tag(m)
6: t← mac (k,m)
7: B ← B ∪ {(m, t)}

8: return t
9: end procedure

10: procedure vrf(m, t)
11: b← check(k,m, t)
12: W ←W ∨ (b ∧ ((m, t) /∈ B))
13: return b
14: end procedure

The strong unforgeability game for a MAC scheme MAC together with
an MBO that becomes 1 as soon as more than q ∈ N queries have been
made to one of the tag or vrf oracles is denoted as GSUF-CMA

q (MAC), and
the performance of an adversary in breaking MAC within q queries is defined
by

q
GSUF-CMA
q (MAC)

y
.

2.4.3 Symmetric Encryption

The purpose of a symmetric encryption scheme is to protect the confidentiality
of plaintext messages in a setting where two parties already share a secret key.
The sender computes an (often probabilistic) function on the plaintext and
the secret key, and sends the obtained ciphertext to the receiver. The receiver
then applies the (usually deterministic) decryption function to the ciphertext
and the secret key to recover the original plaintext.

Definition 2.18. An encryption scheme with plaintext spaceM, key space K,
and ciphertext space C is a pair SC = (enc,dec) of (possibly probabilistic)
functions enc : K ×M → C and dec : K × C → M ∪ {�}. An encryption
scheme is correct if for all k ∈ K and m ∈M, dec(k, enc(k,m)) = m. �

The fundamental goal of an encryption scheme is to protect the confiden-
tiality of the transmitted messages. The standard security notions for confi-

54 CHAPTER 2. PRELIMINARIES

dentiality are IND-CPA and IND-CCA, i.e., indistinguishability (of ciphertexts)
under chosen-plaintext and chosen-ciphertext attack, respectively. Several
variants appear in the literature; in all variants, a bit B ∈ {0, 1} is chosen uni-
formly at random, and, depending on the variant, the adversary has access to
one of the following settings of oracles:

• multiple queries at a “real-or-random” oracle where, in each query, the
adversary inputs a plaintext m0, the game chooses m1 with |m0| = |m1|
uniformly at random, and returns an encryption of mB;

• multiple queries at a “left-or-right” oracle where the adversary inputs
two messages m0 and m1 with |m0| = |m1| and obtains an encryption
of mB;

• multiple queries at an “encryption” oracle where, on input m, the adver-
sary obtains an encryption of m, as well as one “real-or-random” query;

• multiple “encryption” queries and one “left-or-right” query.

Finally, the adversary has to guess the bit B (with probability non-negligibly
different from 1/2). It turns out that, for any encryption scheme, the advan-
tages that can be achieved in the above games are related by a factor that is
either a constant or linear in the number of queries [BDJR97].

IND-CPA. The term IND-CPA usually refers to a game where the adversary
has access to the oracles described in one of the four settings above. In this
thesis, we use the “real-or-random” definition of IND-CPA, because it relates
to constructive security definitions in a clear way. Relations to the other no-
tions follow by the statements shown by Bellare et al. [BDJR97].

System 3 IND-CPA System GIND-CPA
b (SC)

1: procedure init
2: k←$K
3: end procedure

4: procedure enc(m0)
5: m1←$ {0, 1}|m0|

6: c←$ enc(k,mb)
7: return c
8: end procedure

The systems describing the IND-CPA game for an encryption scheme SC
together with an MBO that becomes 1 as soon as more than q ∈ N queries have
been made to the enc oracle are denoted as GIND-CPA

q,b (SC) for b ∈ {0, 1}, and

2.4. CRYPTOGRAPHIC SCHEMES AND SECURITY PROPERTIES 55

the performance of an adversary in breaking SC within q queries is defined
by

q(
GIND-CPA
q,0 (SC)

∣∣ GIND-CPA
q,1 (SC)

)y
.

IND-CCA. In the IND-CCA game, the adversary is, in addition to one type
of oracles of the IND-CPA game, given access to a decryption oracle where
it can query ciphertexts that are different from those he obtained from the
encryption oracle. The reason for the latter restriction is that if the adversary
were allowed to decrypt the ciphertexts obtained in the game, winning the
game would become trivial.

System 4 IND-CCA System GIND-CCA
b (SC)

1: procedure init
2: k←$K
3: B ← ∅
4: end procedure

5: procedure enc(m0)
6: m1←$ {0, 1}|m0|

7: c←$ enc(k,mb)
8: B ← B ∪ {c}

9: return c
10: end procedure

11: procedure dec(c)
12: if (c /∈ B) then
13: m← dec(k, c)
14: return m
15: end if
16: end procedure

The systems in the IND-CCA game for an encryption scheme SC together
with an MBO that becomes 1 as soon as more than q ∈ N queries have been
made to either the enc or dec oracles are denoted as GIND-CCA

q,b (SC) for b ∈
{0, 1}, and the performance of an adversary in breaking SC within q queries
is defined by

q(
GIND-CCA
q,0 (SC)

∣∣ GIND-CCA
q,1 (SC)

)y
.

INT-CTXT. Integrity of ciphertexts has been introduced by Bellare and Nam-
prempre [BN00], and formalizes that the adversary cannot produce any fresh
valid ciphertext. In more detail, an encryption scheme is said to achieve INT-
CTXT security if no adversary with access to an encryption oracle can gen-
erate a valid ciphertext that is different from all ciphertexts obtained from
the oracle. Here, “valid” means that the decryption outputs a message (not
an error symbol). Note that existential unforgeability [KY00b] and ciphertext
unforgeability [Kra01] are similar: The differences are, for example, that the
definition of Bellare and Namprempre [BN00] allows multiple queries to the
challenge oracle, whereas the one of Katz and Yung [KY00b] allows only one.

56 CHAPTER 2. PRELIMINARIES

System 5 INT-CTXT Game GINT-CTXT(SC)

1: procedure init
2: k←$K
3: B ← ∅
4: end procedure

5: procedure enc(m)
6: c← enc(k,m)
7: B ← B ∪ {c}

8: return c
9: end procedure

10: procedure check(c)
11: b← (dec(k, c) 6= �)
12: W ←W ∨ (b ∧ (c /∈ B))
13: return b
14: end procedure

The system in the INT-CTXT game for an encryption scheme SC together
with an MBO that becomes 1 as soon as more than q ∈ N queries have been
made to either the enc or check oracles is denoted as GIND-CTXT

q (SC), and the
performance of an adversary in breaking SC within q queries is defined byq
GIND-CTXT
q (SC)

y
.

2.4.4 Public-Key Encryption

The purpose of a public-key encryption (PKE) scheme is to allow a sender
to encrypt messages for a receiver in a setting without a pre-shared secret
key. The receiver generates a key pair consisting of a public and a private
(or secret) key, and publishes the public key. The encryption of a message
is computed based on the public key, but only the receiver (who knows the
private key) can decrypt ciphertexts.

Definition 2.19. A public-key encryption (PKE) scheme with message spaceM,
ciphertext space C, public-key space PK, and secret-key space SK consists of
three (possibly probabilistic) functions PKE = (PKEgen,PKEenc,PKEdec):
a (probabilistic) key-generation function PKEgen : ∅ → PK × SK, a (prob-
abilistic) encryption function PKEenc : PK ×M → C, and an (often deter-
ministic) decryption function PKEdec : SK × C → M ∪ {�}. A PKE scheme
is correct if for all key pairs (pk , sk) ∈ im(PKEgen) ⊆ PK × SK and m ∈ M,
PKEdec(sk ,PKEenc(pk ,m)) = m. �

The key-generation function PKEgen outputs a pair (pk , sk) ←$ PKEgen()
of keys, the encryption function PKEenc takes a messagem ∈M and a public
key pk ∈ K and outputs a ciphertext c←$ PKEenc(pk ,m), and the (usually
deterministic) decryption function PKEdec takes a ciphertext c ∈ C and a

2.4. CRYPTOGRAPHIC SCHEMES AND SECURITY PROPERTIES 57

secret key sk and outputs a plaintext m ← PKEdec(sk , c). The decryption
algorithm may output the special symbol �, indicating that the ciphertext c is
invalid. The most important properties for our work are confidentiality, key
privacy, and robustness.

Confidentiality. The most commonly required property of PKE schemes is
indistinguishability under chosen-ciphertext attacks (IND-CCA). Usually, IND-
CCA is defined as a left-or-right (LoR) indistinguishability game, where an
adversary must guess which of two messages m0 and m1 of his choice are
encrypted under a known public key, depending on a hidden bit B. The game
is formalized as GPKE-CCA

b (PKE) in System 6, where the name is chosen to
avoid a collision with the IND-CCA game for symmetric encryption.

System 6 IND-CCA System GPKE-CCA
b (PKE)

1: procedure init
2: (sk , pk)←$ PKEgen()
3: cc ← �
4: return pk
5: end procedure

6: procedure dec(c)
7: if c 6= cc then
8: m← PKEdec(sk , c)
9: return m

10: end if
11: end procedure

12: procedure chgen(m0,m1)
13: if cc = � then
14: cc←$ PKEenc(pk ,mb)
15: return cc
16: end if
17: end procedure

The systems in the IND-CCA game for a PKE scheme PKE together with
an MBO that becomes 1 as soon as more than q ∈ N queries have been made
to the dec oracle are denoted as GPKE-CCA

q,b (PKE) for b ∈ {0, 1}, and the perfor-
mance of an adversary in breaking PKE within q queries is defined by

q(
GPKE-CCA
q,0 (PKE)

∣∣ GPKE-CCA
q,1 (PKE)

)y
.

Key privacy. In a key-private PKE scheme, the adversary, given two public
keys pk0 and pk1, must be unable to tell which key was used to generate a
given ciphertext [BBDP01]. The purpose of this definition is to formalize that
an adversary cannot determine with respect to which public key an encryption
was computed, hence, this is supposed to formalize an anonymity guarantee
for the receiver. The definition is similar in spirit to the standard “left-or-right”
IND-CCA definition, where the adversary is given the public key, but does not

58 CHAPTER 2. PRELIMINARIES

know which of two messages is encrypted under it. In the key-privacy game
the message is known, but not the public key. The notion can be formalized
as a distinction problem between two systems GIK-CCA

b (for b ∈ {0, 1}), which
is described as System 7.

In particular, we denote by cc the challenge ciphertext. The decryption
oracle dec(·, ·) takes as input a ciphertext c and a bit b ∈ {0, 1}, the latter in-
dicating under which secret key c shall be decrypted. If the adversary asks to
decrypt the challenge ciphertext after the challenge has been generated, the
algorithm returns without value; else, it returns the decryption of the cipher-
text c under sk b. The challenge generation algorithm chgen can be invoked
only exactly once during the game. (If the adversary runs this procedure for
a second time, the game remains inactive.) The challenge ciphertext is then
output to the adversary.

System 7 IK-CCA System GIK-CCA
q,b (PKE)

1: procedure init
2: (sk0, pk0)←$ PKEgen()
3: (sk1, pk1)←$ PKEgen()
4: cc ← �
5: return (pk0, pk1)
6: end procedure

7: procedure dec(c, b′)
8: if c 6= cc then
9: m← PKEdec(sk b′ , c)

10: return m
11: end if
12: end procedure

13: procedure chgen(m)
14: if cc = � then
15: cc←$ PKEenc(pk b,m)
16: return cc
17: end if
18: end procedure

The systems in the IK-CCA game for a PKE scheme PKE together with an
MBO that becomes 1 as soon as more than q ∈ N queries have been made
to the dec oracle are denoted as GIK-CCA

q,b (PKE) for b ∈ {0, 1}, and the perfor-
mance of an adversary in breaking PKE within q queries is defined by

q(
GIK-CCA
q,0 (PKE)

∣∣ GIK-CCA
q,1 (PKE)

)y
.

Robustness. The notion of robustness in encryption was formalized by Ab-
dalla et al. [ABN10] to specify the behavior of an encryption scheme on ci-
phertexts that were generated with respect to different public keys. The no-
tion comes in two flavors: weak and strong robustness, both with versions
under chosen-plaintext and under chosen-ciphertext attacks. We focus here

2.4. CRYPTOGRAPHIC SCHEMES AND SECURITY PROPERTIES 59

on weak robustness under chosen-ciphertext attacks (WROB-CCA), associ-
ated with the game described as System 8, where the adversary may call the
following oracles.

• On input an identifier id , the oracle genuser(·) generates a public and
a private key for the user id and returns the public key. A set U keeps
track of the users generated by the genuser(·) oracle, i.e. the honestly
generated key pairs.

• On input a valid identifier id ∈ U , the oracle corrupt(·) returns the
private key corresponding to user id and adds the identifier to a set V.

• On input a valid identifier id ∈ U and a ciphertext c, the decryption
oracle dec(·, ·) outputs the corresponding plaintext m.

We modify the original game in the sense that instead of a finalize oracle
that allows to specify a pair of identities (id0, id1) of uncorrupted identities,
encrypts a message under id0 and decrypts under id1, we describe a enc or-
acle that allows to specify the identity for encrypting and decrypts under all
other uncorrupted identities. Additionally, this oracle can be queried multi-
ple times, and returns the obtained ciphertext c. By a standard “guessing”
argument, for n users and up to q messages, this can be seen to relate to the
original definition by a factor of nq. The symbol “∗” in the description of the
following game is to be understood as a wildcard.

The system in the WROB-CCA game for a PKE scheme PKE in a setting
with n users together with an MBO that becomes 1 as soon as more than q ∈ N
queries have been made to the dec or check oracles or more than n ∈ N
queries have been made to the genuser-oracle is denoted as GWROB-CCA

n,q (PKE),
and the performance of an adversary in breaking the weak robustness of PKE
within q queries and with n users is defined by

q
GWROB-CCA
n,q (PKE)

y
.

2.4.5 Key-Encapsulation Mechanisms

The purpose of a key-encapsulation mechanism (KEM) is to allow a sender
to transmit a secret key to a receiver in the same setting as for public-key
encryption. The receiver generates a key pair consisting of a public and a
private (or secret) key, and publishes the public key. The encapsulation of
a key is computed based only on the public key, but only the receiver (who
knows the private key) can decapsulate the key from a ciphertext.

Definition 2.20. A key-encapsulation mechanism (KEM) with key space K, ci-
phertext space C, public-key space PK, and secret-key space SK consists of
three possibly probabilistic functions KEM = (KEMgen,KEMenc,KEMdec):

60 CHAPTER 2. PRELIMINARIES

System 8 WROB-CCA Game GWROB-CCA(PKE)

1: procedure init
2: U ,V ← ∅
3: end procedure

4: procedure genuser(id)
5: (sk id , pk id)←$ PKEgen()
6: U ← U ∪ {(id , sk id , pk id)}
7: return pk id

8: end procedure

9: procedure corrupt(id)
10: if (id , ∗, ∗) ∈ U then
11: V ← V ∪ {id}
12: return sk id from U
13: end if
14: end procedure

15: procedure enc(m, id0)
16: c←$ PKEenc(pk id0

,m)
17: for id ∈ U \ (V ∪ {id0}) do
18: mid ← PKEdec(sk id , c)
19: W ←W ∨ (mid 6= �)
20: end for
21: return c
22: end procedure

23: procedure dec(id , c)
24: if (id , ∗, ∗) ∈ U then
25: m← PKEdec(sk id , c)
26: return m
27: end if
28: end procedure

a (probabilistic) key-generation function KEMgen : ∅ → PK × SK, a (prob-
abilistic) encapsulation function KEMenc : PK → K × C, and an (often de-
terministic) decapsulation function KEMdec : SK × C → K ∪ {�}. A KEM
is correct if for all key pairs (pk , sk) ∈ im(PKEgen) ⊆ PK × SK and (k, c) ∈
im(KEMenc(pk)), KEMdec(sk , c) = k. �

The (probabilistic) key-generation function KEMgen : ∅ → PK × SK out-
puts a key pair (pk , sk), the (probabilistic) encapsulation function KEMenc :
PK → K×C takes a public key pk ∈ K and outputs a pair of key and ciphertext
(k, c) ←$ KEMenc(pk), and the (usually deterministic) decapsulation func-
tion KEMdec : SK × C → K ∪ {�} takes a secret key sk and a ciphertext
c ∈ C and outputs a key k ← KEMdec(sk , c). The decapsulation function may
output the special symbol �; this indicates that the ciphertext c is invalid.

The most important property for our work is indistinguishability of the en-
capsulated key from an independent and uniformly random one. This prop-
erty is, analogously to the public-key encryption case, often referred to as
IND-CPA. The game is formalized as GKEM-CPA

b in System 9, where the name is
chosen to avoid a collision with the IND-CPA game for symmetric encryption.

The systems in the IND-CPA game for a KEM scheme KEM are denoted
as GKEM-CPA

b (KEM) for b ∈ {0, 1}, and the performance of an adversary in

2.4. CRYPTOGRAPHIC SCHEMES AND SECURITY PROPERTIES 61

System 9 IND-CPA System GKEM-CPA
b (KEM)

1: procedure init
2: (sk , pk)←$ KEMgen()
3: return pk
4: end procedure

5: procedure chgen
6: (k0, c) ←$ KEMenc(pk)
7: k1←$K
8: return (kb, c)
9: end procedure

breaking KEM is defined by

J(GKEM-CPA
0 (KEM) | GKEM-CPA

1 (KEM))K .

2.4.6 Signatures

The purpose of a signature scheme is to allow a sender to authenticate mes-
sages for a receiver in a setting without a pre-shared secret key. The sender
initially generates a key consisting of a (private) signature key and a (public)
verification key, and publishes the verification key. The signature of a message
is computed based on the private signature key and can only be computed by
the party possessing that key, but signatures can be verified by any party pos-
sessing the verification key.

Definition 2.21. A signature scheme with message spaceM, signature space
S, signature-key space SK, and verification-key space VK consists of three
(possibly probabilistic) functions SIG = (SIGgen,SIGsgn,SIGvrf): a (prob-
abilistic) key-generation function SIGgen : ∅ → SK × VK, a (probabilistic)
signing function SIGsgn : SK ×M → S, and an (often deterministic) veri-
fication function SIGvrf : SK ×M × S → {true, false}. A signature scheme
is correct if for all key pairs (sk , vk) ∈ im(SIGgen) ⊆ SK × VK and m ∈ M,
SIGvrf(vk ,m,SIGsgn(sk ,m)) = true. �

The key-generation function SIGgen takes no input and outputs a pair
(sk , vk) of a signature key sk and a verification key vk . The signing function
SIGsgn takes as input a signature key sk and a message m ∈ {0, 1}∗, and
outputs a signature s←$ SIGsgn(sk ,m). The (often deterministic) verification
function SIGvrf takes as input a verification key vk , a message m, and a sig-
nature s, and outputs a decision value. The common security requirement for
a signature scheme SIG is called unforgeability and is formalized by the game
GEUF-CMA(SIG). This corresponds to WUF-CMA for MACs.

62 CHAPTER 2. PRELIMINARIES

System 10 EUF-CMA Game GEUF-CMA(SIG)

1: procedure init
2: (sk , vk) ←$ SIGgen
3: B ← ∅
4: return vk
5: end procedure

6: procedure sign(m)
7: s←$ SIGsgn (sk ,m)
8: B ← B ∪ {m}

9: return t
10: end procedure

11: procedure vrf(m, s)
12: b← SIGvrf (vk ,m, s)
13: W ←W ∨ (b ∧ (m /∈ B))
14: return b
15: end procedure

The existential unforgeability game for a signature scheme SIG together
with an MBO that becomes 1 as soon as more than q ∈ N queries have been
made to one of the sign or vrf oracles is denoted as GEUF-CMA

q (SIG), and the
performance of an adversary in breaking SIG within q queries is defined byq
GEUF-CMA
q (SIG)

y
.

Chapter 3

A Framework for
Constructive Cryptography

This chapter introduces a formal framework that instantiates the concepts
of abstract and constructive cryptography introduced by Maurer and Ren-
ner [MR11]. It follows the top-down approach of abstract cryptography, start-
ing with the formalization of the abstract paradigm underlying the security
statements and step-by-step refining the concepts while, for each additional
layer, proving that the axioms of the previously described layer are satisfied.

In Section 3.1, we describe the notion of construction from Maurer and
Renner [MR11], which can be seen as the characteristic feature of construc-
tive cryptography. We also define what it means for a construction to be
composable. Composability can be understood as the property that the guar-
antee formalized by a construction notion is useful in a larger context (i.e., for
higher-level protocols), and allows complex protocols to be built from smaller
sub-protocols in a modular fashion.

We continue in Section 3.2 by providing an algebraic description of the
abstract systems concept of Maurer and Renner [MR11]. On a high level, ab-
stract systems capture the topology in which multiple interacting systems are
connected. They allow to formulate and prove certain statements, such as the
composition theorem, by only manipulating symbolic expressions. We define
the construction notion for cryptographic protocols in the setting with a single
(external) attacker, in Section 3.3, based on the formalism of abstract systems.
We also discuss how parametrized constructions are defined, which allow for
making statements that depend on, for instance, a security parameter such as
the key length or the set of statically corrupted parties.

Finally, Section 3.4.1 contains a formalization of discrete systems, which

63

64 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

allows to actually describe the behavior of cryptographic protocols and to
prove their security. The particular notion we describe here formalizes behav-
ior that is described by a distribution over monotone functions, and we show
that systems of this type satisfy the axioms of the abstract systems algebra de-
scribed in Section 3.2. We developed this formalism independently by asking
for the minimal type of discrete behavior in the context of system algebras;
we later found out that it can be seen as a probabilistic version of the mono-
tone functions in Kahn networks [Kah74]. In Section 3.4.2, we describe how
statements can be parametrized to capture bounds based on “dynamic” pa-
rameters like the number or length of inputs. Section 3.4.3 explains how the
reduction proofs in the subsequent chapters are performed, and Section 3.4.4
introduces a specification language for discrete systems.

3.1 The Construction Concept

A central and well-known paradigm in constructive disciplines is to construct
a complex system from simpler component systems or modules, which each
may consist of yet simpler component systems, and so on. Each such construc-
tion step is described by a constructor that specifies how the given components
(elements of some component set Ω) are combined to construct a more useful
or otherwise desirable component (again in the set Ω); a constructor hence
formalizes a certain method or scheme that combines and transforms the com-
ponents. The sequential application of several construction steps can again be
seen as a single construction step. This is formalized by a composition opera-
tion “◦” on the set of constructors that allows to “chain” multiple construction
steps.

Definition 3.1. A constructor set Γ is a set equipped with a (partial) compo-
sition operation ◦ : Γ× Γ→ Γ. �

A construction notion can be seen as a relation in Ω×Γ×Ω, where the state-
ment that a triple (R, a, S) ∈ Ω×Γ×Ω is in that relation means that the con-
structor a assumes the component R and constructs from it the component S.
The definition of the considered relation determines which constructions are
valid.

Definition 3.2. A construction notion for a component set Ω and a constructor
set Γ is a subset of Ω × Γ × Ω. A construction is often denoted by an arrow,
for example −→, as follows: If (R, a, S) is in the construction, then we write
R

a−−→ S and say that the component S is constructed from R by a. �

A construction notion is only useful if the constructed components can be
used as assumed components in subsequent construction steps. This prop-

3.2. ABSTRACT SYSTEMS 65

erty of a construction notion is called composability and is formalized in the
following definition. It corresponds to the standard notion of transitivity for
binary relations.

Definition 3.3. A construction −→ for component set Ω and constructor set Γ
is called serially composable if the following property holds for all R,S, T ∈ Ω
and a, b ∈ Γ:

R
a−−→ S ∧ S

b−−→ T =⇒ R
b◦a−−−→ T.

�

The composability of a construction assures that multiple construction
steps can be applied subsequently. This is instrumental for a clean and mod-
ular protocol design.

The original definition of Maurer and Renner [MR11] requires the exis-
tence of a constructor id that behaves as the identity on the components:

∀R ∈ Ω : R
id−−→ R.

Furthermore, the construction is required to be context insensitive in the sense
that the a constructor a that constructs S from R still applies if additional
components are available in parallel to R and S. We do not require these two
properties. The identity constructor described by Maurer and Renner [MR11]
is required because of the way in which they define parallel composition; it
would be redundant in our formulation.1 Context insensitivity does not hold
for the construction notion we consider in this thesis. The reason is that
the definition of construction is based on explicit reductions, and the context
indeed affects the reduction. While the constructions are not context insen-
sitive, the influence of the context can be specified exactly, and Lemma 3.14
describes this effect.

3.2 Abstract Systems

In settings where multiple objects are connected, one needs a formalism to
describe the topology of the composite object. This holds, for instance, for
computer networks where the topology describes which computers commu-
nicate, but also for a setting with multiple interactive systems (like algorithms

1Roughly, when “embedding” a construction in a context, the identity construction assures
that the context can be left unchanged. In a tuple-based formulation, a construction can apply
only to a sub-tuple, the remainder is left unchanged without an explicit identity constructor.

66 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

or automata) where the topology describes which outputs of one system are
provided as an input to which other system. The concept of abstract systems
as described in Section 1.1.4 captures such topologies.

We first formalize in Section 3.2.1 a system algebra that captures the
notion of abstract systems. We continue in Section 3.2.2 to describe a re-
stricted case, called the cryptographic algebra, whose specific axioms (basi-
cally, it restricts and concisely describes the topologies that are relevant for
cryptographic protocols) are used to formulate and prove statements about
protocols in a setting with multiple parties. Section 3.2.3 describes how the
operations in the cryptographic algebra can be instantiated using the opera-
tions in any system algebra.

3.2.1 The Algebra of Abstract Systems

At the highest level of abstraction, following the hierarchy described by Mau-
rer and Renner [MR11], systems are objects with interfaces by which they
connect to (interfaces of) other systems. Each interface is labeled with an
element of a given label set. The operations of the system algebra, i.e., which
systems can be connected via which interfaces, then capture the topologies in
which systems can be connected.

Mathematically, such a system algebra is a set S of systems together with
a parallel composition operation that composes two or more systems into
a single system,2 and an operation for connecting two interfaces of a sin-
gle system. Interfaces of different systems are connected by first compos-
ing them into a single system and then connecting the desired interfaces.
The parallel composition is depicted in Figure 3.1a, where three systems S1

(with interface labels 1, . . . , 5), S2 (with labels A, . . . , E) and S3 (with la-
bels a, . . . , e) are composed. The interface labels of the systems are preserved
during the composition; the resulting system thus has interfaces labeled by
elements 1, . . . , 5, A, . . . , E, a, . . . , e.

For any pair of interface labels, there is an interface connecting operation
which connects the two specified interfaces of a system. This is depicted in
Figure 3.1b where the interfaces 3 and 4 of the system S1 are connected.
First connecting two interfaces of a system and then composing the resulting
system in parallel with further systems is the same as first performing the
parallel composition and then connecting the corresponding interfaces. If the
order in which pairs of interfaces are connected is irrelevant, the algebra is
called connection-order invariant. The described concept of system algebra is
formalized in the following definition.

2This mapping need only be defined if the systems have distinct interface names.

3.2. ABSTRACT SYSTEMS 67

S1 S2 S3

1 2 3

4 5

a b c

d e

A B

C D E

(a) The system obtained by parallel composi-
tion of S1, S2, and S3.

S1

1 2 3

4 5

(b) The system obtained by con-
necting interfaces 3 and 4 of S1.

Figure 3.1: Composition operations in the system algebra.

Definition 3.4. Let J be some label set. A system algebra with interface set J
is a set S such that for each system S ∈ S there is an associated set JS ⊆ J ;
we say that S has interfaces JS . A system algebra is finitary if for all S ∈ S,
the set JS is finite. A system algebra has the following operations:

Parallel composition: A mapping ‖ : S × S → S that maps a pair of systems
with disjoint interface sets to a single system such that with S1, S2 ∈ S
with interface sets JS1

and JS2
: JS1 ‖S2

= JS1
∪ JS2

.

Interface connecting: For each pair j, j′ ∈ J , an interface connecting oper-
ation γj:j′ : S → S such that for each S ∈ S with

j, j′ ∈ JS : Jγj:j′ (S) = JS \ {j, j′} ,

that is, each interface can be connected to only a single other interface.
The operation γj:j′ is the identity on systems S with j, j′ /∈ JS .

The parallel composition is associative and commutative, i.e.,

∀S1, S2, S3 ∈ S : (S1 ‖S2) ‖S3 = S1 ‖ (S2 ‖S3) and S1 ‖S2 = S2 ‖S1,

and the two types of mappings commute in the sense that

∀S1, S2 ∈ S, j, j′ ∈ JS1
: γj:j′(S1) ‖S2 = γj:j′ (S1 ‖S2) , (3.1)

68 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

The algebra S is called connection-order invariant if additionally for all distinct
j1, j

′
1, j2, j

′
2 ∈ J , the operations γj1:j′1

and γj2:j′2
commute. �

It is often helpful to relabel the interfaces in the description of complex
scenarios where multiple systems are connected. Such relabeling operations
are supposed to merely change the way in which the interfaces of the system
are addressed, not to change the (behavior of the) system itself. Each relabel-
ing operation can be described by a (possibly only partially defined) injective
mapping ρ : J → J that maps the original interface names to the names after
the relabeling is applied. By slight abuse of notation, we usually use the same
symbol to describe the induced mapping ρ : S → S.

Definition 3.5. A system algebra S with interface set J is called a system
algebra with relabeling operations if each injective function ρ : J → J in-
duces an operation S → S that maps a system S with interface set JS to a
system ρ(S) with interface set ρ(JS), such that

1. the transformation of mappings J → J to mappings S → S is a monoid
homomorphism, i.e.

∀S ∈ S, ρ1, ρ2 : J → J : ρ2(ρ1(S)) = (ρ2 ◦ ρ1)(S);

2. for an operation γj:j′ and a relabeling mapping ρ : J → J , first con-
necting the two specified interfaces and then relabeling the remaining
ones is the same as first relabeling all interfaces and then connecting
the relabeled interfaces, i.e.

ρ ◦ γj:j′ = γρ(j):ρ(j′) ◦ ρ; (3.2)

3. and for systems S1, S2 ∈ S and functions ρ1 : JS1
→ J and ρ2 : JS2

→
J such that JS1

∩JS2
= ∅, ρ1(JS1

)∩ ρ2(JS2
) = ∅, and ρ1 is the identity

on JS2
and ρ2 is the identity on JS1

,

(ρ1 ◦ ρ2) (S1 ‖S2) = ρ1(S1) ‖ ρ2(S2), (3.3)

i.e., first composing two systems in parallel and then relabeling all in-
terfaces is the same as first relabeling the interfaces of the systems indi-
vidually and then composing them in parallel.

�

The conditions correspond to the requirement that relabeling the inter-
faces of a system does not change the system itself, but only the way in which
it is connected to other systems.

3.2. ABSTRACT SYSTEMS 69

3.2.2 The Cryptographic Algebra

Cryptographic protocols are applied in scenarios where multiple parties in-
teract. We explicitly formalize the resources that are available to the parties;
in a setting with multiple parties, resources are potentially accessible to all
involved parties. Specific resources which are available only locally to one
party can be considered as a special case. In terms of abstract systems, this
means that a resource is a system that provides one interface to each of the
parties. We will usually denote resources either by symbols such as •− → or
by upper case letters.

An algorithm or method that is applied by a party and makes use of the
resource can be seen as a two-interface system that connects with its inside
interface to the resource and provides its outside interface to the party. Such
a system is called a converter and, at a lower abstraction layer, the inside in-
terface specifies the way in which the converter uses the resource, the outside
interface specifies in which way it can be used by the party or by higher-level
protocols. The term “converter” reflects the fact that it “converts” the inter-
face provided by the resource into a different interface. The composition of
a resource and a converter is again a resource that provides one interface to
each party. Converters are denoted either by small Greek letters or by special
identifiers such as enc or dec.

The described structure can be captured algebraically by considering a
set Φ of resources and a set Σ of converters together with the described opera-
tion. We refer to this algebraic structure as cryptographic algebra; the concept
was introduced by Maurer and Renner [MR11]. The operation of attaching
the inside interface of the converter α ∈ Σ to interface I of the resource R is
written as αIR.

Definition 3.6 (Cryptographic algebra). A cryptographic algebra with interface
set I is a pair (Φ,Σ) of sets of resources Φ and converters Σ, with a (poten-
tially partially defined) converter application operation. For each I ∈ I, this
is an operation

·I · : Σ× Φ→ Φ, (α,R) 7→ αIR.

The algebra is composition-order invariant if

∀α, β ∈ Σ, R ∈ Φ, I 6= J ∈ I : αIβJR = βJαIR.

�

Composition-order invariance ensures that drawing a diagram such as the
one in Figure 3.2 makes sense: The figure does not encode the information
whether the converter α or the converter β is attached to the resource first,

70 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

but composition-order invariance guarantees that both orders result in the
same resource.

Rα βI J

Figure 3.2: A resource R with converters α and β connected at interfaces I
and J , respectively. This structure is denoted as αIβJR.

Serial composition of converters. For a resourceR ∈ Φ, a converter α ∈ Σ,
and an interface I ∈ I, the term αIR describes again a resource. If a further
converter β ∈ Σ is attached to the same interface I ∈ I, the resulting object
βI
(
αIR

)
is again a resource. More generally, one can consider sequences of

converters, with the understanding that a sequence of converters is attached
to the resource in some pre-described order. We write the sequence in the
above expression as β ◦ α and define

(β ◦ α)
I
R := βI

(
αIR

)
. (3.4)

The operation “◦” is associative by definition. In this sense, it is sound to
consider sequences of converters, i.e., elements of Σ∗ as “a converter,” since
composition-order invariance guarantees that converter applications at dif-
ferent interfaces commute. It is not generally necessary to require that a
sequence of converters is again a single converter; however, for many natural
instantiations, like the one we describe in Section 3.2.3, such an operation
can actually be defined.

Parallel composition: Tuples of resources and converters. In most set-
tings, parties can have access to multiple resources and run several protocols
simultaneously. This is formalized by parallel composition operations on the
sets of resources and converters, and for resources it means that, for instance,
a communication channel and a cryptographic key are available. For convert-
ers, the parallel composition corresponds to applying the converters to the
available resources individually, such as an encoding to the communication
channel and an expansion to the key.

If multiple resources are available, a party must be able to address the par-
ticular resource to which it wants to apply a converter. Hence, the availability
of multiple resources corresponds to the availability of a tuple of resources,
where the labels of the tuple allow to address the resource to which a con-
verter shall be attached. In a cryptographic algebra, this means that for a

3.2. ABSTRACT SYSTEMS 71

set L ⊆ Λ of labels and resources Rλ ∈ Φ for each λ ∈ L, the tuple 〈Rλ〉λ∈L
is again a resource; we write this as 〈Rλ〉λ∈L ∈ Φ. Each resource Rλ in the
tuple is identified by its label λ ∈ L.

In the same spirit, for a set L′ ⊆ Λ of labels and converters αλ ∈ Σ for
each λ ∈ L′, one can consider a tuple 〈αλ〉λ∈L′ of converters. As for the
resources, this means that 〈αλ〉λ∈L′ ∈ Σ. The capability of a party to address
a specific resource corresponds to applying a tuple of converters where the
resources and converters with the same label are composed; this is formalized
by requiring a corresponding condition in the definition of a cryptographic
algebra with parallel composition, as formalized in equation (3.5).

Definition 3.7. For a label set Λ, a cryptographic algebra (Φ,Σ) is a cryp-
tographic algebra with Λ-parallel composition if the sets Φ and Σ are closed
under taking finite tuples and for L′ ⊆ L ⊆ Λ such that 〈αλ〉λ∈L′ is a tuple of
converters and 〈Rλ〉λ∈L is a tuple of resources, the equation

〈αλ〉λ∈L′
I 〈Rλ〉λ∈L = 〈Rλ〉λ∈L\L′ ∪

〈
αλ

IRλ
〉
λ∈L′ , (3.5)

holds. �

We introduce special notation for denoting the situation where multiple
copies of the same resource are available. For a resource R ∈ Φ, we denote
by 〈R〉 the unbounded sequence of copies of R, where the copies are labeled
by 1, 2, . . . ∈ N, that is,

〈R〉 := (R,R, . . .) .

We write 〈R〉[n] if n copies of the resourceR are available with labels 1, 2, . . . ∈
[n], that is,

〈R〉[n] := (R, . . . , R) ,

where the sequence has n elements.

Viewing parallel composition as an operation. Based on the parallel com-
position, we define an operation on resources that is described by “adding”
one ore more specified resources in parallel. For the simple case where we
only “add” a single resource S, this operation can be written as (·, S) : Φ →
Φ, R 7→ (R,S) and is understood as taking S in parallel to a resource spec-
ified on the right.3 More generally, for n ∈ N, resources R1, . . . , Rn ∈ Φ,
and i ≤ n, the term (R1, . . . , Ri−1, ·, Ri+1, . . . , Rn) is defined to denote the
operation of taking the resources R1, . . . , Ri−1, Ri+1, . . . , Rn in parallel to the

3For notational simplicity, we restrict ourselves to tuples which are indexed by integers; the
extension to generic label sets is straightforward.

72 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

resource specified on the right. In particular, for the setting described above,
this means

(R1, . . . , Ri−1, ·, Ri+1, . . . , Rn)Ri := (R1, . . . , Rn) . (3.6)

The following lemma formalizes in which sense the operation of taking
resources in parallel commutes with the converter application operation, it is
stated with respect to the operation defined on a single resource (·, S), the
analogous statements hold with respect to lists of arbitrary length, arbitrary
“empty positions” in the list, and more generally tuples with arbitrary labels.

Lemma 3.8. Let (Φ,Σ) be a cryptographic algebra with Λ-parallel composition.
For α ∈ Σ, I ∈ I, and R,S ∈ Φ:

(·, S)αIR = 〈α〉1
I

(·, S)R,

where the notation 〈α〉1 denotes a tuple that has a single element α with label 1,
as a set 〈α〉1 = {(1, α)}.

Proof. The property follows directly from the composition of the operation
(·, S) and Definition 3.7. In more detail,

(·, S)αIR =
(
αIR,S

)
= 〈α〉1

I
(R,S) = 〈α〉1

I
(·, S)R,

where the first and third equality use equation (3.6) and the second equality
uses equation (3.5).

3.2.3 Instantiating the Operations of the Cryptographic Al-
gebra

The cryptographic algebra can be seen as describing a specific type of topol-
ogy on abstract systems. Resources and converters are abstract systems, and
the composition operation that connects a converter system to a resource sys-
tem is defined based on their connection as abstract systems. Recall that a
cryptographic algebra with interface set I consists of a set Φ of resource sys-
tems and a set Σ of converter systems, together with a converter application
operation ·I · : Σ× Φ→ Φ for each interface I ∈ I.

Resources and converters. Let I and L be label sets and In,Out /∈ I be two
constants. Let S be a finitary abstract system algebra with interface set J =
(I ∪ {In,Out}) × L. We define the set of resource systems to be the set of all
systems with interface labels in the set I × L, that is,

Φ := {S ∈ S : JS ⊆ I × L} ,

3.2. ABSTRACT SYSTEMS 73

and the set of converter systems to be the set of all systems with interface
labels in the set {In,Out} × L, that is,

Σ := {S ∈ S : JS ⊆ {In,Out} × L} .

To understand resources as systems with interfaces in I (instead of I×L) and
converters as systems with interfaces in {In,Out} (instead of {In,Out}×L), we
consider each interface in I or {In,Out} as consisting of sub-interfaces which
are labeled by sub-interface labels in L relative to the interface. Two interfaces
(such as I ∈ I and In) are then connected by connecting all sub-interfaces
with the same “local” label λ ∈ L, as described in the next paragraph. More
generally, for interface I ∈ I ∪ {In,Out} and each subset L ⊆ L, we can
consider the sub-interface described by all labels in the set {I} × L.4

This interface structure is depicted in Figure 3.3 which shows two sys-
tems α andR, where α has interface labels in {In,Out}×N andR has interface
labels in {A,B,E} × N. Hence, the system α is considered a converter sys-
tem, whereas R is considered a resource system. The dotted ellipses indicate
that all interfaces whose labels coincide in the first component are consid-
ered as being “sub-interfaces” of the interface which is labeled by that first
component.

Rα

Out.1

Out.2

Out.3

In.1

In.2

A.1

A.2

B.1

B.2

B.3

E.1 E.2

“interface In” “interface A”

Figure 3.3: A converter system α and a resource system R, where the In-
interface of α is connected to the A-interface of R.

Composition operation. The composition operation for a converter sys-
tem α ∈ Σ, a resource system R ∈ Φ, and an interface I ∈ I is supposed
to connect the I-interface of the resource system R to the In-interface of the

4For an interface I ∈ I and a “local” label λ, we usually write the pair (I,λ) as the concate-
nation I.λ.

74 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

converter system α. We only define the composition operation if the set of
sub-interfaces is the same for the two connected interfaces; that is, if there is
a finite set L ⊆ L such that L = {λ ∈ L | I.λ ∈ JR} = {λ ∈ L | In.λ ∈ Jα}.

The composition is then obtained by taking the parallel composition of R
and α and connecting the interfaces appropriately and modifying the interface
labels by the mapping ρI : Out.λ 7→ I.λ, which relabels the outside interface
of the converter system to become the I-interface of the composed system.
Altogether, the composition is defined as

αIR :=
(
ρI ◦

∏
λ∈L

γIn.λ:I.λ

)
(α ‖R) . (3.7)

The connection of a converter system α and a resource system R—without
the relabeling—is depicted in Figure 3.3. The system αAR is obtained by
relabeling the interfaces Out.i to A.i, for i ∈ {1, 2, 3}.

Tuples. To formally define the parallel composition, we consider the special
case where the set L is defined as L := Λ = Λ∗ for some label set Λ. As
the parallel composition of resource systems (or converter systems) is defined
via tuples with explicit labels, these labels can be used to access the specific
sub-interface of a particular resource system (or converter system) in a par-
allel composition. More concretely, if a resource system R appears in a tuple
with label λ, then all sub-interfaces of this resource system are relabeled by
prepending the label λ to the prior label of the sub-interface. An exemplary
setting with a tuple of 2 resource systems is depicted in Figure 3.4.

R1

R2

A.1

A.2

B.1

B.2

B.3

E.1 E.2

A.1

A.2

A.3

B.1

B.2

E.1 E.2

A.1.1

A.1.2

A.2.1

A.2.2

A.2.3

B.1.1

B.1.2

B.1.3

B.2.1

B.2.2

E.1.1 E.1.2 E.2.1 E.2.2

Figure 3.4: Interface relabeling for the tuple {(1, R1) , (2, R2)} of resource
systems.

In the cryptographic algebra, for a tuple of resource systems 〈Rλ〉λ∈L with
labels in L ⊆ Λ, the term

(
〈Rλ〉λ∈L

)
is defined as first relabeling each Rλ via

3.2. ABSTRACT SYSTEMS 75

I.λ 7→ I.λ.λ and then taking the resulting systems in parallel. The tuple of
converter systems is defined analogously.

The following lemma shows that the resulting algebra is indeed a compo-
sition-order independent cryptographic algebra with Λ-parallel composition.

Lemma 3.9. Let S be a connection-order invariant finitary system algebra with
interface set J = (I ∪ {In,Out}) × Λ, and let Φ and Σ be as above. Then,
the algebra (Φ,Σ) is a composition-order invariant cryptographic algebra with
interface set I and Λ-parallel composition.

Proof. The composition of a resource system R ∈ Φ and a converter sys-
tem α ∈ Σ is indeed a resource system; as a system it has interfaces in I ×Λ
because the In-interface of the converter system is connected to the I-interface
of the resource system, and the Out-interface is relabeled.

We still have to show that the algebra is composition-order invariant,
which means that the terms αIβJR and βJαIR describe the same system.
To verify this, we define relabeling mappings that change the names of the
interfaces of α and β such that the name collisions are prevented; denote by
ρ̂I and ρ̂J be two injective mappings such that im ρ̂I ∩ im ρ̂J = ∅ and the
assigned names also do not collide with those of R (this can be defined since
Λ = Λ∗). Then, we obtain

αIβJR =

[
ρI ◦

∏
λ∈L

γIn.λ:I.λ

](
α ‖

[
ρJ ◦

∏
λ∈L

γIn.λ:J.λ

]
(β ‖R)

)
(3.8)

=

[
ρI ◦

∏
λ∈L

γIn.λ:I.λ

]
(
ρ̂−1
I ρ̂I(α) ‖

[
ρJ ◦

∏
λ∈L

γIn.λ:J.λ

] (
ρ̂−1
J ρ̂J(β) ‖R

))
(3.9)

=

[
ρI ◦

∏
λ∈L

γIn.λ:I.λ ◦ ρ̂−1
I

]
(
ρ̂I(α) ‖

[
ρJ ◦

∏
λ∈L

γIn.λ:J.λ ◦ ρ̂−1
J

]
(ρ̂J(β) ‖R)

)
(3.10)

=

[
ρI ρ̂
−1
I ◦

∏
λ∈L

γρ̂I(In.λ):I.λ

]
(
ρ̂I(α) ‖

[
ρJ ρ̂
−1
J ◦

∏
λ∈L

γρ̂J (In.λ):J.λ

]
(ρ̂J(β) ‖R)

)
(3.11)

76 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

=

[
ρI ρ̂
−1
I ◦

∏
λ∈L

γρ̂I(In.λ):I.λ ◦ ρJ ρ̂−1
J ◦

∏
λ∈L

γρ̂J (In.λ):J.λ

]
(ρ̂I(α) ‖ (ρ̂J(β) ‖R)) (3.12)

=

[
ρJ ρ̂
−1
J ◦

∏
λ∈L

γρ̂J (In.λ):J.λ ◦ ρI ρ̂−1
I ◦

∏
λ∈L

γρ̂I(In.λ):I.λ

]
(ρ̂J(β) ‖ (ρ̂I(α) ‖R)) (3.13)

= · · · = βJαIR,

where the steps indicated by “. . . ” are exactly the same as before, in oppo-
site order. Overall, we have used in (3.8) the definition from equation (3.7),
in (3.9) that ρ̂I and ρ̂J are injective, in (3.10) that the ranges of ρ̂I and ρ̂J
do not collide mutually or with the labels of R and equation (3.3), in (3.11)
equation (3.2), in (3.12) equations (3.3) and (3.1), and in (3.13) the com-
mutativity of the parallel composition, the connection-order invariance of the
system algebra, and equation (3.11).

The condition specified in Definition 3.7 follows from the fact that the
tuples of resource systems and converter systems are defined analogously,
that is, since the applied relabeling mappings are consistent, the statement
follows from equation (3.2).

3.3 The Construction Notion for Settings with a
Single Attacker

The goal of protocols for secure communication is to allow two or more hon-
est parties to communicate securely, even in presence of an attacker that at-
tempts to eavesdrop or to disturb the communication. In this section, we
describe a (composable) construction notion in the sense of Section 3.1 for
the described setting. In Section 3.3.2, we describe a set of components Ω, a
set of constructors Γ with a composition operation. We define what it means
for a triple (R, a, S) ∈ Ω × Γ × Ω to be valid according to the construction
notion, and show that the described construction notion is composable in the
sense of Definition 3.3. In Section 3.3.3, we show constructive statements can
be parametrized to capture that certain parameters such as the key length or
the number of transmitted messages are reflected in the security bound.

3.3. THE CONSTRUCTION NOTION 77

3.3.1 A Distinction Problem on Resources

The construction notion we describe in this section is, as explained in Sec-
tion 1.1.3, based on the “real-world/ideal-world” paradigm. Both the “real
world” and the “ideal world” are described in terms of resources and convert-
ers, which by Section 3.2.2 means that they are formally resources.

For protocols that do not achieve perfect security, for example because
they are based on computational assumptions, the two considered “worlds”
will not be equivalent. Rather, we will consider a distinction problem between
the two resources, following the formalization in Section 2.2. Both resources
are considered as systems to which a distinguisher (also a system) can be
attached, such that the composition of the resource and the distinguisher de-
termines a bit. We denote this set of distinguishers for abstract resources asD,
and a performance measure in this setting is formally a mapping D → [0, 1]
that assigns to each distinguisher the advantage that it achieves.

The explicit appearance of the performance measures is necessary in a
“concrete,” i.e. non-asymptotic, formulation of security. Since the run-time
of systems and the advantages are not defined asymptotically, one cannot
“absorb efficient systems” into the distinguisher, and the distinguishing ad-
vantage cannot be required to be “negligible.” This becomes apparent in the
composition theorem, where both converters and the error terms accumulate
if multiple constructions are composed.

3.3.2 The Notion of Construction

From a constructive perspective, the goal of a cryptographic protocol is to
construct a desired resource from one or more assumed resources. We focus
on the case where two (or more) honest parties and potentially one attacker
are present, and hence consider resources which provide one interface to each
honest party and one interface to the attacker. A protocol in this setting is a
tuple of converters; there is (at most5) one converter for each honest party.

Definition 3.10. For a set of interface labels I with E ∈ I, a protocol for
I-resources with attacker E is a tuple π ∈ Π with

Π := Σ(I′) with I ′ = I \ {E},

i.e., a protocol π is a tuple π = 〈πI〉I∈I′′ with I ′′ ⊆ I \ {E}. �

5A protocol may also specify that a certain party does not apply a converter but uses the
resources unmodified.

78 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

The application of a protocol π to a resourceR is then defined as attaching
the converters to the respective honest interfaces:

πR := πI1
I1 . . . πIn

InR with I ′′ = {I1, . . . , In} = suppπ.

The term πR is well-defined for composition-order invariant cryptographic al-
gebras because the order in which the converters are attached to the resource
is irrelevant. We usually write the protocols as a pair or sequence if the labels
to which the elements of the sequence correspond are clear from the context.

Analogously to the serial application of converters to a resource in equa-
tion (3.4), we can define the serial application of protocols to a resource. By
composition-order invariance, this simply means that at each interface of the
resource one attaches the sequence of converters that one obtains by compos-
ing the protocols by composing the converters that comprise the protocols per
interface.

Availability and security. A protocol must satisfy two requirements: First,
the protocol must construct the desired resource in a setting where no attacker
is present. This condition is referred to as availability or correctness condition
and excludes trivial protocols that do not even achieve the desired function-
ality if the protocol is not attacked. Second, the condition must construct
the desired resource in a setting where an attacker attempts to, for instance,
eavesdrop or to disturb the communication. This condition is referred to as
security condition.

The two conditions can be viewed as a special case of the more general
definition of construction in the abstract cryptography framework [MR11]
for the case where only one party is potentially dishonest, and the security
condition be viewed as an instance of the “real-world/ideal-world” paradigm.
The “real world” is described by the protocol π and the assumed resource R;
it is denoted as πR. The honest parties access the outside interfaces of the
converters, the attacker directly accesses the resource. While the converters
are expected to mimic the interfaces of the constructed resource S, the E-
interfaces of πR and S will in general not be similar, and hence the distinction
problem between the two resources πR and S is easy to solve. This is com-
pensated by means of a simulator, which is a converter (in the cryptographic
algebra) that is attached to the E-interface of S. The security condition re-
quires the systems πR and σES to be similar, and the underlying intuition is
that an attacker accessing the E-interface of πR can launch the same attack
in a setting with the resource S by attaching the converter σ at its interface of
the resource and then launching the attack.

An axiomatic derivation of the two described conditions and the simu-
lation paradigm is described by Maurer and Renner [MR11, Sections 5, C,

3.3. THE CONSTRUCTION NOTION 79

and E]. An exemplary description of the security condition for the one-time
pad can be found in Section 1.1.3 and by Maurer [Mau11].

Instantiating the components. The component set Ω is defined in terms of
resources in a cryptographic algebra. Since the construction notion is sup-
posed to capture both an availability and a security condition, one needs
to specify the behavior of a resource both in the case where no attacker is
present, and in the case where an attacker is present and potentially attempts
to attack the protocol. There are several ways in which the two guarantees of
a resource can be specified for these two conditions:

Guaranteed converter: For each resource R ∈ Φ, one specifies a converter
⊥R that specifies the assumed “behavior” of the attacker when it is ab-
sent. (The behavior of the resource in that case is ⊥RER.) This models
the fact that the attacker can always choose to not launch an attack and
the formalization closely follows the more abstract definition of Maurer
and Renner [MR11]. A resource is then specified by the pair (R,⊥R) of
a resource system and a converter system.

Pairs of systems: A resource can be described as a pair of resource systems,
one for each condition. This formally means that to each resourceR ∈ Φ
we assign a second resource R⊥ that formalizes the behavior of R in the
setting where no attacker is present, and corresponds to ⊥RER above.
If R is an I-resource, then R⊥ is an (I \ {E})-resource, and for this
description to be meaningful in the sense of [MR11], one actually has
to show that such a converter exists. Since this method results in simple
and easy to grasp descriptions of resources, we follow this approach in
the remainder of the thesis.

Resources with two modes: A resource can be described as operating in two
different modes which can be selected via a special input, which was
referred to as “cheating bit” in several papers, e.g. [MRT12, CMT13a].
There is a special converter⊥which sets the “cheating bit” to 0, whereas
the attacker can choose any of the two modes. While this formaliza-
tion allows to specify the resource as a single object, the formulation
is sometimes misleading because the “cheating bit” should not be an
(adaptively selectable) input. Also, the description of the resources tend
to be more complex.

For the remainder of the thesis, we define a resource as a pair of resource
systems (R,R⊥); more formally, we set Ω = Φ × Φ.6 This choice only affects

6In the context of construction statements, we will usually refer to this pair of resource systems
also as a “resource.”

80 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

the presentation; all formulations result in equivalent conditions. While a
resource is formally a pair of two resource systems (R,R⊥), we usually only
refer to the resource by R and consider R⊥ as being implicitly understood.

Instantiating the constructors. A constructive statement consist of the as-
sumed resource R, the constructed resource S, the (sequence of) protocol(s)
supposed to achieve the construction, and the information “how well” the
protocol(s) achieve this construction. This information is captured in the sim-
ulator (which may be a sequence of converters) that appears in the secu-
rity condition, and in bounds for the distinction advantage between the “real
world” and the “ideal world.” Consequently, a constructor contains the se-
quence of protocols, the simulator, and the performance measures that bound
the distinguishing advantages in the availability and the security conditions.

Definition 3.11. For a set of interface labels I with E ∈ I, a constructor for
I-resources with attacker E is a triple a ∈ Γ with

Γ := Π∗ × Σ∗ × (D → [0, 1])
2
,

where D denotes the set of all distinguishers in the sense of Section 2.2. The
composition operation ◦ on the set Γ is defined as, for a = (π, σπ, επ) ∈ Γ
and b = (ψ, σψ, εψ) ∈ Γ,

b ◦ a := (ψ ◦ π, σπ ◦ σψ, ε) ,

with ε =
(
ε1, ε2

)
for ε1 = ε1

π ◦ (·ψ) + ε1
ψ and ε2 = ε2

π ◦ (·ψ) + ε2
ψ ◦ (·σπE). �

The reason for the exact definition of the composition operation may not
be clear immediately; in fact, the definition of the obtained performance mea-
sure ε is chosen such that the construction can be shown to be composable
in Theorem 3.13. It makes explicit that in the proof of the composition the-
orem, the protocol ψ and the simulator σπ have to be “absorbed” into the
distinguisher and hence affect the performance measure.

Instantiating the construction notion. The construction notion is formally
a subset of Ω × Γ × Ω (it can be considered as relation described by triples)
that specifies which constructions are considered to be “valid.” We define the
construction notion, for the setting with parties labeled by elements in I and
an attacker E, as follows. Let a = (π, σ, ε) with ε =

(
ε1, ε2

)
be a constructor

and let (R,R⊥) and (S, S⊥) be resources. The availability condition then
states that the distinguishing advantage between protocol π applied to R⊥
and the constructed resource S⊥ must be bounded by ε1, and the security

3.3. THE CONSTRUCTION NOTION 81

condition states that the distinguishing advantage between the protocol π
applied to R and the simulator σ applied to S is bounded by ε2.

Definition 3.12. A protocol π ∈ Π∗ constructs the resource S from the as-
sumed resource R, with respect to simulator σ ∈ Σ∗ and within ε = (ε1, ε2),
denoted R p π,σ,ε===⇒ S, if

J(πR⊥ | S⊥)K ≤ ε1 and
q(
πR | σES

)y
≤ ε2,

where the equation holds with respect to the set D of all distinguishers (in
the sense of Section 2.2). �

The application of sequences of protocols and converters to a resource is
defined as in equation (3.4).

The composition theorem. An important property of Definition 3.12 is its
composability. Theorem 3.13 shows that the construction notion is indeed
composable, that is, compatible with the composition on the set of construc-
tors. The main technical argument that is required is the triangle inequality
for the distinguishing advantage.

Theorem 3.13 (Composition theorem). Let R, S, and T be resources, and
let π and ψ be protocols, σπ and σψ be simulators, and επ and εψ pairs of
performance measures such that

R p π,σπ,επ=====⇒ S and S p
ψ,σψ,εψ

======⇒ T.

Then
R p

ψ◦π,σπ◦σψ,ε
=========⇒ T,

where ε1 = ε1
π ◦ (·ψ) + ε1

ψ and ε2 = ε2
π ◦ (·ψ) + ε2

ψ ◦ (·σπE).

Proof. By definition, J(πR⊥ | S⊥)K ≤ ε1
π and

q(
πR | σπES

)y
≤ ε2

π by the
construction statement for π and J(πS⊥ | T⊥)K ≤ ε1

ψ and
q(
πS | σψET

)y
≤

ε2
ψ by the construction statement for ψ. Hence, we have that

J(ψπR⊥ | T⊥)K ≤ J(ψπR⊥ | ψS⊥)K + J(ψS⊥ | T⊥)K ≤ ε1
π ◦ (·ψ) + ε1

ψ,

by Lemma 2.6 and

r(
ψπR | (σπ ◦ σψ)

E
T
)z

≤
q(
ψπR | ψσπES

)y
+
r(
σπ

EψS
∣∣ (σπ ◦ σψ)

E
T
)z

82 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

=
q(
ψπR | ψσπES

)y
+
q(
σπ

EψS
∣∣ σπE (σψET))y

= ε2
π ◦ (·ψ) + ε2

ψ ◦ (·σπE),

by the definition of σπ ◦σψ and Lemma 2.6, which verifies the conditions.

The construction notion is not context insensitive in the sense of [MR11].
That means that if an additional resource T is available in parallel to the
construction of a resource S from a resource R, then the construction will not
hold with respect to the same bounds on the distinguishing advantage. The
reason is that the construction notion is based on the notion of reduction, and
unless one considers “closed” notions (such that one can absorb objects into
the distinguisher without changing the performance), context insensitivity
simply does not hold. The following lemma makes explicit in which way
parallel resources affect the distinguishing performance. It is phrased with
respect to a single resource T composed in parallel, however, the analogous
statement holds with respect to tuples with arbitrarily many resources, and
with respect to tuples with more general label sets.

Lemma 3.14. Let R, S, and T be resources, and let π be a protocol, σ be a
simulator and ε a performance measure such that

R p π,σ,επ====⇒ S.

Then
(R, T) p

〈π〉1,〈σ〉1,ε=======⇒ (S, T) ,

where ε1 = ε1
π ◦ (·, T⊥) and ε2 = ε2

π ◦ (·, T).

Proof. By definition, J(πR⊥ | S⊥)K ≤ ε1
π and

q(
πR | σES

)y
≤ ε2

π. Conse-
quently,

J(〈π〉1 (R⊥, T⊥) | (S⊥, T⊥))K = J((πR⊥, T⊥) | (S⊥, T⊥))K
= J((·, T⊥)πR⊥ | (·, T⊥)S⊥)K
= J(πR⊥ | S⊥)K ◦ (·, T⊥)

= ε1
π ◦ (·, T⊥) ,

using Lemma 2.6, and analogously

J(〈π〉1 (R, T) | 〈σ〉1 (S, T))K = J((πR, T) | (σS, T))K
= J((·, T)πR | (·, T)σS)K
= J(πR | σS)K ◦ (·, T)

= ε2
π ◦ (·, T) .

This completes the proof.

3.3. THE CONSTRUCTION NOTION 83

3.3.3 Parametrized Statements

Security statements about cryptographic protocols are often parametrized
with values that can be parameters of the scheme, such as the key length of an
encryption scheme, or parameters of the environment in which the protocol
is used, such as the number of messages that are encrypted. The parameters
determine the exact bound that can be proven for the cryptographic scheme.
From a constructive perspective, this corresponds to the fact that the con-
structive statement is parametrized, that is, for a given parameter set P, the
construction holds for all parameters p ∈ P, with a specific bound for each
parameter.

In more detail, the components for a parametrized statement are families
of (pairs of) resources,

ΩP :=
∏
p∈P

(Φ× Φ) ,

and the constructors are families of triples

ΓP :=
∏
p∈P

(
Π× Σ× (D → [0, 1])

2
)
,

where each triple consists of a protocol, a simulator, and a pair of performance
measures. We refer to the objects as parametrized resources, protocols, simu-
lators, and performance measures.

Definition 3.15 (Parametrized construction). For a parameter set P, let R =
{Rp}p∈P and S = {Sp}p∈P be families of resources, π = {πp}p∈P a family
of protocols, σ = {σp}p∈P a family of simulators, and ε = {εp}p∈P be a
family of performance measures. Then π constructs S from R, with respect to
simulator σ and within ε, if

R p π,σ,ε===⇒ S :⇐⇒ ∀p ∈ P : Rp p
πp,σp,εp

======⇒ Sp.

�

We use the same “arrow symbol” as for the constructions from Defini-
tion 3.12 because those constructions can be seen as a special case where the
families consist only of a single element. The composition theorem extends
to this case, the statement follows since the condition is defined for each pa-
rameter individually, and Theorem 3.13 applies in each case.

Corollary 3.16. For a parameter set P, let R, S and T be parametrized re-
sources as in Definition 3.15, and let π and ψ be parametrized protocols. Let

84 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

σπ and σψ be parametrized simulators and επ and εψ be suitable performance
measures such that

R p π,σπ,επ=====⇒ S and S p
ψ,σψ,εψ

======⇒ T.

Then
R p

ψ◦π,σπ◦σψ,ε
=========⇒ T,

where ε1
p = ε1

π,p ◦ (·ψp) + ε1
ψ,p and ε2

p = ε2
π,p ◦ (·ψp) + ε2

ψ,p ◦ (·σπ,pE) for
each p ∈ P.

(Static) corruption of parties. In settings with multiple parties, one is often
interested in statements about scenarios in which one or more of the parties
are corrupted by an attacker. Here, corruption refers to a setting in which the
attacker has full control over the (computer of the) party, e.g. by infecting the
computer with malware, and a security statement that takes such corruptions
into account formalizes the guarantees that can still be given to the remaining
uncorrupted parties. Security statements with respect to static corruptions,
that is, the corrupted parties are fixed in advance and cannot be chosen during
the protocol execution, can be formalized as parametrized statements, where
the parameter is the set of corrupted parties.

Constructions with respect to static corruptions are formalized by consid-
ering the parameter set P := 2(I\{E}), where the parameter IC ∈ P describe
the setting in which the parties at interface I ∈ IC are considered corrupted.
A resource R in this setting is (formally) a family of resources {RIC

}IC∈P ,
where the resource RIC

will (usually) be described as providing the capabili-
ties corresponding to the interfaces I ∈ IC at the E-interface.

Following Definition 3.15, constructing a resource S from a resource R
with respect to static corruption then means that the condition must hold
with respect to each set IC ⊆ I. More formally, the construction statement is
described with respect to a family σ = {σIC

}IC∈P and pairs of performance
measures ε = {εIC

}IC∈P such that

∀IC ⊆ I \ {E} : RIC
p
πIC ,σIC ,εIC========⇒ SIC

,

where πIC
consists of the converters for all I ∈ I \ ({E} ∪ IC). The protocol π

is then said to construct S from R with respect to static corruptions if the above
condition is satisfied.

3.4 Discrete Systems

Most cryptographic protocols consist of discrete systems in the sense that the
behavior of each protocol engine is described as a step-wise process where

3.4. DISCRETE SYSTEMS 85

in each step the protocol engine takes as inputs values in some specified set,
performs some computation, and provides as outputs also values in some
set. A protocol execution is then formalized as an interaction of several such
discrete systems.

Random systems as defined by Maurer [Mau02] and also described in Sec-
tion 2.3 formalize discrete behavior as a sequence of conditional probability
distributions of outputs Y1, Y2, . . . given inputsX1, X2, . . . , where in each step
the system takes an input Xi and provides an output Yi. This formalization,
however, is too restrictive to capture the behavior of arbitrary discrete sys-
tems because random systems are only defined if the inputs are provided in
the predetermined orderX1, X2, . . . , whereas for an arbitrary discrete system,
the order in which the inputs are given is not fixed in advance.

In Section 3.4.1, we specify a model of discrete systems which captures
this more general type of behavior. The model can be seen as an extension of
random systems in the sense that the order of inputs is not fixed in advance, it
can also be seen as a modification of Kahn networks [Kah74] to support prob-
abilistic behavior. We prove that this type of discrete system fulfills the axioms
of the abstract system algebra described in Section 3.2, and show how the dis-
tinguishing advantage appears in this context. In Section 3.4.2, we show how
statements about discrete systems can be parametrized such that they capture
parameters such as the number of transmitted messages without having the
protocol depend on this parameter; this uniformity is necessary if no upper
bound is known in advance and hence the protocol must work for an a priori
unbounded number of messages. We then describe in Section 3.4.3 how re-
duction proofs following the ideas described in Section 2.2 will be performed
in the subsequent chapters. Finally, in Section 3.4.4, we introduce a speci-
fication language that we use for describing discrete systems in Chapters 4
and 5.

3.4.1 The Algebra of Monotone Discrete Systems

Generally, a discrete system has a fixed set of input interfaces at which it
accepts input values, and a set of output interfaces at which it provides output
values. Each input or output interface corresponds to a unique (potential)
input or output value in some value space X , and is labeled by an element of
some label set J . The behavior of the system is described as a sequence of
activations, where in each activation the system receives one or more inputs
and potentially provides one or more outputs. The order in which the inputs
are given at the input interfaces is not fixed in advance; the system must
handle arbitrary orders.

If the system behavior is not restricted and may in particular depend on

86 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

the order in which the inputs are given—in contrast to only depending on the
values of the inputs—then the composition of multiple systems with several
connected interfaces introduces non-determinism. The reason is that if multi-
ple inputs without an explicit order are provided to a system, and the behavior
of the system depends on the order in which the inputs are given, then the
output values are not well-defined. From a different perspective, this can be
viewed as an impossibility of achieving a modular description of a composite
system and is usually referred to as the Brock-Ackermann anomaly [BA83]. A
detailed exposition of these effects has been given by Brock [Bro83].

For a specific sub-type of systems, however, these problems do not arise;
these are the systems for which the behavior does not depend on the order in
which the inputs are given; as in the model of Kahn [Kah74]. In the deter-
ministic case, this type of system can be described by a function which maps
tuples of input values to tuples of output values. As a tuple does not encode
the order, such a description of behavior is necessarily independent of the
order.

The formal type of discrete systems. If a system is described by a map-
ping from tuples of inputs to tuples of outputs, and each activation of the
system corresponds to an evaluation of the function on the partial tuple that
describes all inputs provided so far, then the function must be monotone in
the sense that “more defined” inputs will lead to “more defined” outputs. This
monotonicity assures that the behavior of the system remains consistent over
time; when further inputs are given, the output of the function is consistent
with the values of the outputs provided in previous steps. The monotonicity
is formalized with respect to the following order relation on (partial) tuples.

Definition 3.17. Let X be some set, let J be a discrete set, and let x, x̄ ∈
X (J). Then x is more defined than x̄, or x ≥ x̄, if for all j ∈ supp x̄ we have
that x̄j = xj . Analogously, x is strictly more defined than x̄, or x > x̄, if x ≥ x̄
and x 6= x̄. �

Following the above description, the behavior of a deterministic discrete
system whose output does not depend on the order of inputs is formally spec-
ified by a function

f : X (J) → X (J)

which is monotone with respect to the order relation from Definition 3.17.
For each such function f , we define the sets of (potential) input and output
interfaces, denoted In(f) and Out(f), as the smallest subsets of J such that
f can be described as a function X (In(f)) → X (Out(f)). In other words, In(f)
contains the labels in J for which an input at the corresponding position of

3.4. DISCRETE SYSTEMS 87

the tuple potentially affects the function value, and Out(f) contains the labels
in J for which there exists an input to f such that the output tuple contains
a value at the respective position. A function is finitary if both sets In(f)
and Out(f) are finite.

Probabilistic behavior can be described by considering a random function,
i.e., a random variable F over functions f : X (J) → X (J). Such a random
function F then defines an

(
X (J),X (J)

)
-random system F as follows:

pFYk|XkY k−1(yk, x
k, yk−1) := P(F (xk) = yk | ∀l < k : F (xl) = yl). (3.14)

Note that several random functions which correspond to different random
variables may still result in the same random system. One example is the sys-
tem that takes as input a single bit, and provides as output a uniformly ran-
dom bit. This system can be decomposed either into “output 0” and “output
1” with probability 1/2 each, or into “keep” and “flip,” again with probability
1/2 each.

We define monotone discrete systems as random systems that are induced
by monotone random functions as described in equation (3.14); equivalently,
they can be seen as equivalence classes if such random functions. The defini-
tions of In(·) and Out(·) extend to this case.

Definition 3.18. Let X be some set and J be a label set. A monotone discrete
system is a random system F that is induced by a monotone random func-
tion, that is, a random variable over functions X (J) → X (J) according to
equation (3.14). �

We define operations on the systems on their descriptions as monotone
functions, the operations extend to probabilistic systems by defining them on
the realizations of the random variable.

Parallel composition. The parallel composition of monotone functions is
defined as evaluating each function independently of the other functions. For
functions f and f ′ with In(f) ∩ In(f ′) = Out(f) ∩ Out(f ′) = ∅, the parallel
composition of f and f ′ is the function

f ‖ f ′ : X (J) → X (J)

x ∪ x′ 7→ f(x) ∪ f(x′),

where suppx ⊆ In(f) and suppx′ ⊆ In(f ′). It is easy to see that In(f ‖ f ′) =
In(f) ∪ In(f ′), and Out(f ‖ f ′) = Out(f) ∪ Out(f ′). The operation extends to
monotone discrete systems, as shown in the following lemma.

88 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

Lemma 3.19. For two monotone discrete systems F,F′, the composition F ‖F′

is well-defined. Concretely, let F, F ′ and G,G′ be random variables over func-
tions X (J) → X (J) such that F,G are both contained in the equivalence class F
and F ′, G′ are both in the equivalence class F′. Then F ‖F ′ and G ‖G′ are
equivalent.

Proof. The statement can be shown by simply computing the probabilities.
For all sequences x1 ≤ x2 ≤ · · · ≤ xk, x

′
1 ≤ x′2 ≤ · · · ≤ x′k ∈ X (J) with

suppxk ⊆ In(F) and suppx′k ⊆ In(F ′), and y1 ≤ y2 ≤ · · · ≤ yk, y
′
1 ≤ y′2 ≤

· · · ≤ y′k ∈ X (J) with supp yk ⊆ Out(F) and supp y′k ⊆ Out(F ′),

P (∀l : (F ‖F ′)(xl ∪ x′l) = yl ∪ y′l)
= P (∀l : F (xl) = yl) · P (∀l : F ′(x′l) = y′l)

= P (∀l : G(xl) = yl) · P (∀l : G′(x′l) = y′l)

= P (∀l : (G ‖G′)(xl ∪ x′l) = yl ∪ y′l) ,

where the first and last step follow since the random variables are inde-
pendent and the intermediate step uses the equivalence in the individual
cases.

Connecting interfaces. The interface-connecting operation is described by
a pair (i, j) ∈ J × J of labels with the interpretation that the output yj is
identified with the input xi. Intuitively, applying the operation described by
(i, j) to a system results in a “reduced” system where the variables yj and xi
are no longer accessible from the outside.7

To formally define this operation, we introduce some new notation. First,
for a tuple x ∈ X (J) and j ∈ J , we denote by x \ j the tuple that coincides
with x at all labels except for j and is undefined at label j. (This notation
is motivated by the fact that if one views the tuple as a set of pairs, then the
operation corresponds to removing the pair with the first component equal
to j from the set.) Second, for a tuple x ∈ X (J), j ∈ J , and y ∈ X , we
denote by x | j 7→ y the tuple that coincides with x at all labels except for j
and has the value y at position j. (This notation is motivated by the fact that
the tuple is the same as x except for label j, which “maps” to y.) Third, for an
label j, we denote by fj(x) the value of the j-component of the tuple f(x).

Then the new system is described by a function f ′ with In(f ′) = In(f)\{i}
and Out(f ′) = Out(f) \ {j}. More formally, the system is described by the
function

γi:j (f) (x) := f (x | i 7→ fj(x)) \ j.

7If an output (or event) shall be visible to more than one other system, the “sending” system
will simply define several outputs that always have a consistent value.

3.4. DISCRETE SYSTEMS 89

It is easy to see that In(γi:j (f)) = In(f)\{i} and Out(γi:j (f)) = Out(f)\{j}.
This operation is also compatible with the equivalence classes, as shown in
the following lemma..

Lemma 3.20. For a monotone discrete system F, the system γi:j (F) is well-
defined. Concretely, let F and G be random variables over functions X (J) →
X (J) such that F and G are both contained in the equivalence class described
by F. Then γi:j (F) and γi:j (G) are equivalent.

Proof. The statement can again be shown by computing the probabilities.
Let x1, x2, . . . , xk ∈ X (In(F)) and y1, y2, . . . , yk ∈ X (Out(F)). Recall that

γi:j (f) (x) = f(x | i 7→ fj(x)) \ j,
with which we obtain:

P(∀l : γi:j (F) (xl) = yl)

= P (∀l : F (xl | i 7→ Fj(xl)) \ j = yl)

=
∑
t∈X ,
l′≤n

P
(
(∀l < l′ : F (xl) = yl) ∧ (Fj(xl) = t)∧

(∀l ≥ l′ : F (xl | i 7→ t) \ j = yi)
)

+ P (∀l : F (xl) = yl)

=
∑
t∈X ,
l′≤n

P
(
(∀l < l′ : G(xl) = yl) ∧ (Gj(xl) = t)∧

(∀l ≥ l′ : G(xl | i 7→ t) \ j = yl)
)

+ P (∀l : G(xl) = yl)

= P (∀l : G(xl | i 7→ Gj(xl)) \ j = yl)

= P (∀l : γi:j (G) (xl) = yl) ,

where the step in the middle follows from the equivalence.

Relabeling interfaces. For a full instantiation of the system algebra in Defi-
nitions 3.4 and 3.5, we also need to describe how interfaces are relabeled for
discrete monotone systems. For a function f : X (J) → X (J) and a pair of in-
jective mappings ρin, ρout : J → J , the function (ρin, ρout)(f) : X (J) → X (J)

is defined as follows. For an input tuple x ∈ X (ρin(In(f))), first the labels of x
are modified via ρ−1

in , then the function f is applied, and finally the labels of
the obtained tuple are modified via ρout to obtain a tuple in X (ρout(Out(f))).

More formally, one can understand a function ρ : J → J as a map-
ping X (J) → X (J) via

ρ(x) := {(ρ(j), t) : (j, t) ∈ x} ,

90 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

where x is understood as a set of pairs, i.e., a subset of J × X . With this
operation, relabeling the function f can be formally defined as

(ρin, ρout)(f) := ρout ◦ f ◦ ρ−1
in .

The definition extends to random variables over X (J) → X (J) and equiv-
alence classes in the straightforward way. Of course, In((ρin, ρout)(f)) =
ρin(In(f)) and Out((ρin, ρout)(f)) = ρout(Out(f)).

Defining the algebra of monotone discrete systems. We prove that the
algebra of monotone discrete systems is indeed a connection-order invariant
system algebra. As a result, we can use it as an underlying formalism for
constructive security statements. To describe monotone discrete systems as
a system algebra, we denote the input interfaces by elements of J × {?}
and the output interfaces by elements of J × {!}. In more detail, the input
interface i of a monotone discrete system is denoted as i? in the algebra, and
the output interface j of a monotone discrete system is denoted as j! in the
algebra. Thus, the system algebra has interface labels in the set J × {?, !}.
The interface-connection operation is only partially defined, namely for cases
where one input and one output interface are connected.

Theorem 3.21. Let X and J be as above. Then the monotone discrete sys-
tems with the above described operations define a connection-order independent
system algebra with interfaces labels in the set J × {?, !}.

Proof. It is obvious that the operations, when applied to finitary functions,
result in finitary functions. We show that the operations also preserve mono-
tonicity. Indeed, for the parallel composition, for monotone functions f1, f2 :
X (J) → X (J), and x1, x2, x

′
2, x
′
2 ∈ X (J) with suppx1 ⊆ suppx′1 ⊆ In(f1),

suppx2 ⊆ suppx′2 ⊆ In(f2), x1 ≤ x′1, and x2 ≤ x′2,

(f1 ‖ f2)(x1 ∪ x2) = f1(x1) ∪ f2(x2) ≤ f1(x′1) ∪ f2(x′2) = (f1 ‖ f2)(x′1 ∪ x′2)

and hence f1 ‖ f2 is also monotone.
The function γi:j (f) is also monotone: for two inputs x, x′ ∈ X (J) with

x ≤ x′ and suppx′ ⊆ In(f), the monotonicity of f implies that fj(x) ≤
fj(x

′), consequently x | i 7→ fj(x) ≤ x′ | i 7→ fj(x
′) and again by the

monotonicity of f we conclude γi:j (f) (x) ≤ γi:j (f) (x′).
To show that the algebra is indeed connection-order invariant, we have

to show that the order in which two feedbacks are applied does not matter.
More concretely, the condition means that applying (i, j) and (i′, j′)—with
i 6= i′ and j 6= j′—in any order has the same effect:

f ′(x) = f (x | i 7→ fj(x)) \ j,

3.4. DISCRETE SYSTEMS 91

so for any x ∈ X (In(f)\{i,i′}),

f ′′(x) = f ′
(
x | i′ 7→ f ′j′(x)

)
\ j′

= f
(
x | i′ 7→ f ′j′(x), i 7→ fj(x | i′ 7→ f ′j′(x))

)
\ j, j′

= f

(
x

∣∣∣∣ i′ 7→ fj′ (x | i 7→ fj(x)) ,
i 7→ fj (x | i′ 7→ fj′ (x | i 7→ fj(x)))

)
\ j, j′

and analogously
f̄ ′(x) = f (x | i′ 7→ fj′(x)) \ j′,

which results in

f̄ ′′ = f̄ ′(x | i 7→ f̄ ′j(x)) \ j
= f

(
x|i 7→ f̄ ′j(x), i′ 7→ fj′(x | i 7→ f̄ ′j(x))

)
\ j, j′

= f

(
x

∣∣∣∣ i 7→ fj (x | i′ 7→ fj′(x)) ,
i′ 7→ fj′(x | i 7→ fj (x | i′ 7→ fj′(x)))

)
\ j, j′.

Hence, we have to show that f ′′ = f̄ ′′ (which is trivial for the labels j and j′).
The general case is as follows. Consider how i′ is set for the outermost evalu-
ation of f : if fj′(x) = �, then the innermost fj(. . .) is evaluated on input x
both in f ′′ and in f̄ ′′, hence it returns the same result and i′ is set consistently
in both cases. If fj′(x) 6= �, then i′ is set consistently by monotonicity. The
analogous argument holds for i.

The consistency with the relabeling mappings is easy to verify.

Distinguishers for discrete monotone systems and the distinguishing ad-
vantage. As the discrete monotone systems are shown to fulfill the axioms
of the abstract system algebra from Definition 3.4, the results of Sections 3.2.3
and 3.3 lead to a construction notion between resources which are described
by (pairs of) discrete monotone systems and which is based on the distinction
problem between the systems that describe the resources. To apply these defi-
nitions, we have to describe how the corresponding distinguishing advantage
is defined.

Following the construction of a cryptographic algebra from any system
algebra in Section 3.2.3, a resource in a cryptographic algebra with interface
labels in I is a system with interfaces labeled by elements in the set J = I×L
for some set L. As described in Section 3.4.1, such a discrete monotone sys-
tem can be viewed as an

(
X (J),X (J)

)
-random system. The distinction prob-

lem and distinguishing advantage for discrete monotone systems is then de-
fined by the notions for these random systems as described in Definition 2.10.

92 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

More formally, the distinction advantage monotone discrete resources is de-
fined based as the advantage in terms of random systems, and the set D
of distinguishers for discrete monotone systems is the set of

(
X (J),X (J)

)
-

distinguishers according to Definition 2.10.

Definition 3.22. Let R and S be discrete monotone resources with interface
labels in J = I ×L with an MBO that determines when the resource “stops.”
Let D be an

(
X (J),X (J)

)
-distinguisher as in Definition 2.10. Then the distin-

guishing advantage of D in distinguishing R and S is defined as

∆D (R,S) :=
∣∣PDR(W = 1)− PDS(W = 1)

∣∣ ,
that is, as the distinguishing advantage as random systems. �

According to Definition 2.10, the random variable W is defined once a
special MBO of the connected system (R or S) becomes 1. We describe in Sec-
tion 3.4.2 how this definition is used to formalize parametrized statements.

For a performance function ε = J(R | S)K, terms of the form ε ◦ (·αI)
appear in the composition theorem. This is, by definition,(

ε ◦ (·αI)
)

(D) =
q(
αIR

∣∣ αIS)y (D) = ∆D
(
αIR, αIS

)
,

for all distinguishers D. Analogously, one can view this of the advantage of
a distinguisher DαI in distinguishing R from S, where the advantage is de-
fined as first composing α at interface I to R and S, and then computing the
advantage of D on the obtained resources. With this more general interpreta-
tion of distinguishers, composition-order invariance holds by definition of the
composition.

3.4.2 Parametrized Statements and Uniformity

For several types of cryptographic schemes, one is interested in providing se-
curity bounds that depend on how often the scheme is used, or on the amount
of resources a potential attacker may have. For instance, in a setting where
messages are authenticated by “authentication tags” generated by a uniform
random function, the probability of the attacker to simply guess a valid tag,
and hence forge a message, clearly depends on the number of attempts the
attacker can make. The protocol is required to not depend on the parameters,
because the restriction on the attacker (or often even the number of messages
that shall be transmitted during the execution of the protocol) is a priori not
bounded. The purpose of the parameters is to make the analysis of the scheme
dependent on the use of the scheme. In this sense, we are interested in a “uni-
form” parametrization in which each object (like resources and protocols) is
described as a parametrization of the same discrete monotone system.

3.4. DISCRETE SYSTEMS 93

To faithfully capture such a parametrization in terms of such “uniform”
parameters, we specialize the parametrized constructions described in Sec-
tion 3.3.3. The families of protocols and resources are each described by a
single monotone discrete system, and for each parameter p ∈ P, the element
of the family is obtained by extending the discrete system by a special mono-
tone binary output (MBO). The distinction advantage is then defined by using
the disjunction of all these MBOs (the resources and the protocol resp. simu-
lator may all have such an MBO) to determine when the random experiment
stops, i.e., which output of the distinguisher is used as the random variable W
according to Definition 2.5. This formalization assures that the protocol and
resources are uniform in the sense that their behavior is independent of the
parameter, the MBOs are only introduced to make the security statement and
determine the end of the random experiment.

More formally, this means that a (uniform) parametrized construction
with respect to discrete systems is defined on a parametrized component
set ΩP and a parametrized constructor set ΓP as in Section 3.3.3, where each
family in these parametrized sets is obtained by parametrizing a monotone
discrete system with a family of MBOs. Combining Definitions 2.10 and 3.15,
a parametrized statement is then defined as follows.

Definition 3.23. Let P be some set of parameters. Let (R,R⊥) and (S,S⊥)
be resources, π be a protocol, and σ be a simulator, which are all monotone
discrete systems. For each p ∈ P, consider an MBO on each of the systems
(resulting in systems Rp, Rp

⊥, Sp, Sp⊥, σp and a tuple of systems πp which all
have MBOs).

For a family of (pairs of) performance measures ε1
P = {ε1

p}p∈P and ε2
P =

{ε2
p}p∈P , the protocol π constructs (S,S⊥) from (R,R⊥) with respect to σP

and within εP =
(
ε1
P , ε

2
P
)
, with parameter set P, if, for all p ∈ P:

J(πpRp
⊥ | Sp⊥)K ≤ ε1

p

and r(
πpRp | (σp)

E
Sp
)z

≤ ε2
p.

�

Here, the distinction advantage is defined as described in Definition 2.10,
i.e., the output of the distinguisher is determined once the MBO becomes 1.

As a specific notation, if for two discrete systems R and S with MBOs that
determines when the distinguishing experiment stops, we write R ≡ S, then
this is to be understood as R

g
≡ S with respect to those MBOs. The reason for

this notation is that we will make statements in settings where MBOs appear

94 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

both in the sense of “winning a game” and in the sense of “restricting the use,”
and the specific notation shall clarify to which of the MBOs we refer.

3.4.3 Discrete Games and Reductions

Security statements about protocols which are based on computational as-
sumptions are formalized by providing an explicit reduction from the com-
putational problem formalizing the assumption to breaking the security of
the scheme. The computational problems are specified in terms of (discrete)
games as described in Section 2.4.1, and a reduction maps a distinguisher for
the security statement to a solver for such a game. In this section, we describe
how the discrete games can be embedded into the system algebra developed
in this chapter, and how reduction proofs are formalized.

Games such as those described in Section 2.4.1 either correspond to ab-
stract games as in Definition 2.3 (if they formalize that a certain condition is
hard to provoke, such as the unforgeability of a MAC or a signature scheme)
or to distinction problems as in Definition 2.5 (if they formalize that two situa-
tions are difficult to tell apart, such as for the confidentiality of an encryption
scheme).

The interfaces of a game according to Section 2.4.1 that is used by the
game winner or distinguisher is described by certain procedures that can be
called. For simplifying the formalization of the reductions, we slightly gener-
alize the interpretation of the games given in Section 2.4.1 to allow, in each
step, to provide a variable-length sequence of procedure calls. Consequently,
as a random system (i.e., a family pYi|XiY i−1 of conditional probability dis-
tributions) the system takes as each input Xi zero or more calls to the pro-
cedures, and replies in Yi by the corresponding results. Consistently with
Section 2.4.1, we assume that some specific encoding of the sequences and
procedure calls exists, each Xi contains a (variable length) list of elements
which contain the identifier of the procedure. The result Yi is a (variable
length) list of elements which contain the return values of the corresponding
procedures.

In a reduction from game-winning for a certain game to a distinction prob-
lem that arises in our security definitions, we have to describe a function that
maps each distinguisher to a game winner and analyze how the performance
is translated. Recall that a distinguisher is an environment for a discrete re-
source as described in Section 3.4.1; in particular, it can be viewed as an(
X (J),X (J)

)
-random system that in each step provides a tuple of messages

to be given to the resource it is connected to, and as a result expects a tuple
of outputs.

A reduction in this setting is also a sequence of conditional probability

3.4. DISCRETE SYSTEMS 95

distributions. In each step, it first obtains an input in the set X (J) from the
distinguisher and outputs a (variable length) list of procedure queries to the
connected game. Second, it obtains a (variable length) list of return values
from the game and outputs an element from the set X (J) to the distinguisher.
Abstractly, such a reduction can be seen as a converter which itself is a discrete
system and connects with its inside interface to the system formalizing the
computational problem, and with its outside interface to the distinguisher.

Definition 3.24. A (discrete) reduction system C is a family of conditional
probability distributions{

pCX̄i|XiX̄i−1Y i−1Ȳ i−1 , p
C
Yi|XiX̄iY i−1Ȳ i

}
i≥1

,

where the random variables X1, X2, . . . and Y1, Y2, . . . take on values in the
set X (J), the random variables Ȳ1, Ȳ2, . . . describe sequences of procedure
calls, and the random variables X̄1, X̄2, . . . describe sequences of results. �

A random experiment with a distinguisher D (which is an environment
in the sense of Definition 2.9 with inputs and outputs in X (J)), a reduction
system C, and a game G (which is a discrete game that takes as input se-
quences of procedure calls and provides as output sequences of results) is
then described by the random experiment DCG obtained as

PDCG
XiY iX̄iȲ i = pDXi|Y i−1 · pCX̄i|XiY i−1Ȳ i−1 · pCY i|XiX̄iȲ i · p

G
Ȳ i|X̄i .

The structure of the random experiment is indicated in Figure 3.5: Iteratively,
D generates a value Xi, then C, given this value, issues a query X̄i to G.
After G responds with a value Ȳi, C provides the value Yi to D.

D C G

Xi ∈ X (J)
X̄i

ȲiYi ∈ X (J)

Figure 3.5: The setting with D, C, and G.

3.4.4 Specification of Discrete Systems

The systems considered in the remainder of this thesis are monotone discrete
systems as described in Section 3.4.1. Specifying the systems in terms of their
mathematical type (i.e., the conditional probability distributions) is, however,

96 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

cumbersome and makes the behavior of the systems difficult to understand.
In principle, any specification language that uniquely determines a system
can be used to describe it. In this section, we describe a pseudo-code based
description language that we will use in the remainder of the thesis, which
allows for both a precise and comprehensible description, and for verifying
that the described system is indeed monotone.

Recall that each system has a specific set of input and output interfaces
which are specified by labels, and for resources with interfaces in I. These
inputs and outputs are identified by terms of pairs (I,λ) ∈ I × Λ (where
again Λ = Λ∗ and the last character of the string λ is supposed to contain the
information whether the interface is an input or output interface, hence it is
in the set {?, !}).

We have defined monotone discrete systems with respect to a single value
space X for all inputs and outputs of the systems. In the descriptions of
specific systems, we will describe the variables with concrete value spaces;
this can be seen as taking the set X to be the union of all value spaces used in
the descriptions of the systems, and having the systems ignore values which
are not in the set for which they are specified. Consequently, input values that
are outside of the specified sets do not influence the behavior of the system;
the system treats that as if the input was undefined.

Example: Insecure channel. The single-use insecure channel − → can be
described as a system that only has a single input (called “A.1?”) at the A-
interface, one input and one output (called “E.1?” and “E.1!′′, respectively)
at the E-interface, and a single output (called “B.1!”) at the B-interface.

The behavior of the system is then described in System 11 using the fol-
lowing notation. The keyword once signifies that the corresponding sub-
routine is evaluated once the condition specified after the keyword (here
A.1? 6= �) becomes true; the specific statement E.1! ← A.1? effects that the
described value is assigned to the output variable. The keyword upon used
for the input at sub-interface E.1? can be seen as a shortcut for the statement
once E.1? 6= � and is used for a more compact notation. (We have used both
keywords in the description of the system only to explain their meaning.)

Note that multiple output variables can be set in a single such evalua-
tion, the description of the system must assure that the value of each output
variable is not changed once it is set. This is obvious in the considered case,
because each output variable is set only in a single sub-routine, and each such
sub-routine is evaluated only once.

Several systems will actually be specified with respect to an infinite num-
ber of inputs and are hence formally not finitary as a monotone discrete
system. As all our security statements will be parametrized, each particular

3.4. DISCRETE SYSTEMS 97

System 11 Insecure channel − →

1: once A.1? 6= �
2: E.1!← A.1?
3: end.

4: upon E.1?
5: B.1!← E.1?
6: end.

parametrized resource will be a finitary system. In this sense, such resources
with infinitely many inputs can be seen as a “prototype” from which the fini-
tary objects are derived by properly restricting them.

A note on interface names of converters. In Section 3.2.3, we have de-
scribed the application of a converter at interface I of a resource by connect-
ing each sub-interface of the converter’s inside interface with the sub-interface
of the resource’s I-interface that has the same name relative to the interface.
As we label the input sub-interfaces of the discrete resources by names of the
type i? and the output sub-interfaces by names of the type j!, this naming con-
vention must be inverted for the inside interface of the converter. The outside
interface of the converter has the same name conventions as the interfaces
of the resource. As the converter is directed, the composition need only be
defined for connecting the inside interface of a converter to an interface of
the resource, and the described naming scheme is sufficiently general.

98 CHAPTER 3. A FRAMEWORK FOR CONSTRUCTIVE CRYPTOGRAPHY

Chapter 4

Constructing Resources for
Secure Communication

Following the paradigm of constructive cryptography, the goal of a crypto-
graphic protocol is to construct, in the sense described in Chapter 3, a desired
resource from assumed resources. In the context of secure communication,
the most important types of resources are communication channels with dif-
ferent security guarantees (described in Section 4.1) and resources formaliz-
ing shared randomness such as cryptographic keys (described in Section 4.2).

Section 4.3 discusses message authentication based on a shared uniform
random function or on a weakly unforgeable MAC, and (symmetric) encryp-
tion is discussed in Section 4.4 for the particular cases of the one-time pad and
CBC-mode encryption. For the one-time pad, we discuss both the case where
the ciphertext is transmitted over an authenticated channel, and where it is
transmitted over an insecure channel. These statements appeared in simi-
lar form, but within a slightly different formal model, in the lecture notes of
Maurer [Mau14]. Furthermore, we show how several game-based notions for
symmetric encryption schemes from the literature relate to constructions; in
particular, we provide such relations for IND-CPA, IND-CCA, and INT-CTXT.
The latter material appeared in the work of Maurer et al. [MRT12].

The construction of a secure channel via symmetric encryption and a MAC
scheme can be performed in two orders: Either, one first constructs an authen-
ticated channel using the MAC and then applies encryption to obtain a secure
channel; this is usually referred to as Encrypt-then-Authenticate. Or, one first
constructs a confidential channel using the encryption and then applies a MAC
to obtain a secure channel; this is usually referred to as Authenticate-then-
Encrypt. We discuss these two possible orders in Section 4.5; the material is

99

100 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

partially based the results of Maurer and Tackmann [MT10].
Section 4.6 describes how anonymous communication can be viewed as a

resource. We focus on receiver-anonymous communication, i.e., a setting with
one sender and multiple potential receivers, and where the identity of the in-
tended receiver is protected. An anonymity-preserving public-key encryption
scheme has the goal of constructing a receiver-anonymous confidential chan-
nel from a receiver-anonymous insecure channel and authenticated channels
from the receivers to the sender; this extends the features of general public-
key encryption as described by Coretti et al. [CMT13a]. The material of this
section is taken from Kohlweiss et al. [KMO+13].

Finally, Section 4.7 discusses key establishment in the setting where only
one party is authenticated. This setting prevails in practical client-server ap-
plications on the Internet where often only the server has a certified public
key; the client is authenticated only later by sending its credentials over the
connection that is already secured with the key. We present a protocol which
is efficient and has mild computational assumptions, and also show how this
protocol can be used in a practical scenario where a public-key infrastructure
and a pre-shared password are available. The material is taken from Maurer
et al. [MTC13].

4.1 Communication Channels

The capability of two honest parties to communicate is captured as a resource
by modeling it as an explicit communication channel that allows the sender to
input a message and the receiver to retrieve it. The security properties of such
a channel are described by the capabilities provided to a third (hypothetical)
type of entity: the attacker. In this section, we describe channels that model
several natural types of communication such as insecure, authenticated, or
secure communication, as sketched in Table 1.1 in Section 1.2. Section 4.1.1
contains material that is relevant to all channels formalized here. The subse-
quent sections contain the specification of insecure (Section 4.1.2), authenti-
cated (Section 4.1.3), confidential (Section 4.1.4), and secure (Section 4.1.5)
channels.

4.1.1 Formal Type and Availability Condition

All channels are formally specified as (pairs of, see Section 3.3) discrete sys-
tems in the sense of Definition 3.18, that is, they are probabilistic monotone
functions from and to tuples of values. The channels are resources in a cryp-
tographic algebra with interface labels in I = {A,B,E}. In this section, we

4.1. COMMUNICATION CHANNELS 101

specify all channels as channels from A to B, the attacker’s capabilities are
specified as interface E. The channels in the opposite direction can be de-
scribed analogously, and we denote them with the “mirrored” arrow such as,
e.g.,← −• instead of •− →.

Each channel is parametrized by a set M, the message space, which de-
scribes the set of messages that can be transmitted over the channel. The
message space is usually indicated by specifying it on top of the arrow symbol;
we omit the set in caseM := {0, 1}∗. The A-interface has input sub-interfaces
identified by numbers i ∈ N for sending the i-th message; the channel thus
takes inputs A.1?, A.2?, . . . with values in M. The B-interface has output
sub-interfaces which are also identified by numbers i ∈ N; the channel thus
provides outputs B.1!, B.2!, . . . which also take on values in M. The inputs
and outputs at the E-interface depend on the particular type of channel that
is considered.

The system describing the channel in the availability condition is the same
for all channels and is formalized as System 12. We use the symbol ◦−�◦
to indicate that the type of channel is arbitrary (i.e., the circles “◦” are un-
derstood as wildcards that apply to cases the bullets “•” may or may not be
there).

System 12 Channel
M
◦−�◦⊥ when no attacker is present

1: once ∀j ≤ i : A.j? 6= �
2: B.i!← A.i?
3: end.

The messages are processed in a fixed order (this is achieved by requiring
A.j? 6= � for all j ≤ i). The channel ◦−�◦⊥ is of the type described in
Section 3.4.1, since additional inputs only lead to additional outputs, and the
order in which the inputs are provided does not matter. These properties
apply to all resource systems described below analogously.

The single-use channel ◦− →◦⊥ is described exactly as ◦−�◦⊥ but only
takes a single input at the A-interface and immediately outputs the provided
message at the B-interface.

4.1.2 Insecure Channels

Most communication channels existing in the real world, such as communi-
cation over the Internet or wireless networks, are insecure. An attacker that
has access to the network can eavesdrop on transmitted messages and also
determine the messages that are delivered to the receiver.

102 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

The resource system described as System 13 is an insecure channel with
message space M. The E-interface takes inputs and outputs at interfaces
labeled with numbers i ∈ N, and all inputs E.1?, E.2?, . . . and, respectively,
outputs E.1!, E.2!, . . . are, like the inputs at the A- and the outputs at the
B-interfaces, values in the setM.

System 13 Insecure channel
M
−�

1: once ∀j ≤ i : A.j? 6= �
2: E.i!← A.i?
3: end.

4: once ∀j ≤ i : E.j? 6= �
5: B.i!← E.i?
6: end.

All messages input by the sender are immediately leaked to the attacker
and can be replaced with arbitrary other messages. The channel −�⊥ =
◦−�◦⊥ is obtained by attaching at the E-interface the converter that sim-
ply forwards all messages to the receiver. The existence of such a converter
is necessary for the resource −� to be well-defined as described in Sec-
tion 3.3. The single-message channel that takes only a single input A.1? at
the A-interface, provides a single output B.1! at the B-interface, and takes
one input E.1? and provides one output E.1! at the E-interface is denoted
as − →, and is described as an example in System 11 on page 97.

4.1.3 Authenticated Channels

An authenticated channel guarantees that all messages delivered to the re-
ceiver B have actually been sent by the designated sender A. Such channels
may exist physically (if one assumes, e.g., that the receiver can verify the
sender’s voice or handwriting). They can also be constructed by cryptographic
schemes such as signatures or MAC. There are different types of authenticated
channels that differ in their guarantees in terms of whether, e.g., the order of
the messages is preserved, or whether messages sent honestly once can be
delivered repeatedly; we describe two specific but natural types below.

Unordered authenticated channel. The channel •−�� described as Sys-
tem 14 models the authenticated channel with message spaceM which only
guarantees, for each message output at the B-interface, that it has been input
at the A-interface before. This means that the attacker has the capabilities
of delivering the messages in a different order, delivering the same message

4.1. COMMUNICATION CHANNELS 103

multiple times, and to never deliver certain messages. This behavior is indi-
cated by the “�” used in the symbol, which indicates a buffer that stores the
values input by A. The messages stored in the buffer can later be delivered
to B.

The E-interface again has input and output sub-interfaces with labels i ∈
N. The outputs E.1!, E.2!, . . . are values in the set M; the channel outputs
at each sub-interface E.i! the message input at the A.1?-interface. The inputs
E.1?, E.2?, . . . are values in the set N. Upon input E.i? = j, the channel
outputs as the i-th message at the B-interface the j-th message that was input
at the A-interface, more formally, B.i!← A.j?. It is again easy to verify that

System 14 Unordered authenticated channel
M
•−��

1: once ∀j ≤ i : A.j? 6= �
2: E.i!← A.i?
3: end.

4: once ∀j ≤ i : B.j! 6= �

5: k ← E.i?
6: once A.k? 6= �
7: B.i!← A.k?
8: end.
9: end.

the channel is a monotone system of the type described in Section 3.4.1, and
that there is a converter that can be attached to the E-interface to obtain the
resource system •−��⊥ = ◦−�◦⊥. This converter, upon receiving an output
at E.i!, immediately inputs E.i?← i.

Ordered authenticated channel. The channel •−� as specified in Sys-
tem 15 formalizes the stronger guarantee that the messages input at the A-
interface are output at the B-interface in the same order, and that no mes-
sages can be dropped in between. This guarantee is useful in applications
because the channel can be understood as faithfully delivering a “stream” of
messages.

The E-interface again has input and output sub-interfaces with labels i ∈
N. The outputs E.1!, E.2!, . . . are again values in the setM; the channel im-
mediately outputs the messages input at the corresponding A-sub-interface.
The inputs E.1?, E.2?, . . . are unary and only take a special value � (the value
space is {�}); the understanding is that as soon as the inputs A.i? and E.i?
are provided, the variable B.i! is defined to be equal to A.i?.

The single-use authenticated channel is denoted as •− → and behaves
as •−�. Analogously to − →, the A-interface has a single input A.1?, the

104 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

System 15 Ordered authenticated channel
M
•−�

1: once ∀j ≤ i : A.j? 6= �
2: E.i!← A.i?
3: end.

4: once ∀j ≤ i : E.j? = �∧A.j? 6= �
5: B.i!← A.i?
6: end.

B-interface has a single output B.1?, and the E-interface has one input E.1?
and one output E.1!.

4.1.4 Confidential Channels

A confidential channel protects the secrecy of the transmitted messages, but
does not necessarily also guarantee the integrity or authenticity. Confidential-
ity means that at most some partial information (usually the length) about the
transmitted messages is output at the E-interface. The absence of integrity
and authenticity guarantees means that E-interface may allow to modify the
messages input by A before they are output at B, or to inject messages into
the channel which are delivered to B. We describe here two specific types
of confidential channels which will be of interest in subsequent sections to
describe what certain types of schemes achieve.

Non-malleable confidential channel. The first such channel is a non-mal-
leable confidential channel which formalizes that the E-interface allows to ei-
ther forward (unmodified) messages that have been input at the A-interface,
or to input “unrelated” messages that will then be output at the B-interface.
Such a channel from A to B can, for instance, be constructed (from an au-
thenticated channel from B to A and an insecure channel from A to B) by a
public-key encryption scheme, as shown by Coretti et al. [CMT13a].

The channel, which is denoted by the symbol −��•, is specified as Sys-
tem 16. The outputs E.1!, E.2!, . . . at the E-interface are values in the set N,
each output E.i! is defined as the length of the corresponding input provided
at A.i?. The inputs E.1?, E.2?, . . . are in the setM∪N. The behavior is that if
an input E.i? has a valuem ∈M, then the outputB.i! is set to this valuem. If
the input E.i? has a value k ∈ N, then the output B.i! is set to the value A.k?,
that is, the k-th input at the A-interface is provided as i-th output at the B-
interface. The “�” in the symbol again signifies that the channel contains a
“buffer” such that the messages input by A can be output at the B-interface
in any order and each message can even be output multiple times.

4.1. COMMUNICATION CHANNELS 105

System 16 Non-malleable confidential multiple-use channel
M
−��•

1: once ∀j ≤ i : A.j? 6= �
2: E.i!← |A.i?|
3: end.

4: once (∀j < i : B.j! 6= �)∧E.i? 6=
�

5: if E.i? ∈ N then
6: k ← E.i?

7: once A.k? 6= �
8: B.i!← A.k?
9: end.

10: else . E.i? ∈M
11: B.i!← E.i?
12: end if
13: end.

XOR-malleable confidential channel. An exemplary channel that provides
at the E-interface the capability to modify messages input by A but not to
input unrelated messages is described as System 17. We refer to this channel
as the XOR-malleable channel because the channel takes at the E-interface
an “XOR-mask” that is applied to the message input at interface A. For sim-
plicity, we describe the channel only for a single message and with message
spaceM = {0, 1}`. This channel can be constructed by applying the one-time
pad to an insecure communication channel and a shared secret key. We de-
scribe this construction (but for messages of arbitrary length) in Theorem 4.5
in Section 4.4.1.

System 17 XOR-malleable confidential single-use channel
{0,1}`
−⊕→• for `-bit

messages

1: upon A.1?
2: if E.1? 6= � then
3: E.1!← A.1?⊕E.1?⊕B.1!
4: else
5: E.1!←$ {0, 1}`
6: end if
7: end.

8: upon E.1?
9: if A.1? 6= � then

10: B.1!← A.1?⊕E.1?⊕E.1!
11: else
12: B.1!←$ {0, 1}`
13: end if
14: end.

Both the input E.1? and the output E.1! at the E-interface are in the
set {0, 1}`. In a less formal description, the channel behaves as follows:

• If first a message m is input at the A-interface, then the channel outputs

106 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

at the E-interface a uniformly random bit string of length `. If later
a message is input at the E-interface, then the channel outputs at the
B-interface the XOR of the original message m and both the output and
input at the E-interface.

• If first a message c′ is input at the E-interface, then the channel outputs
at the B-interface a uniformly random bit string m′ of length `. If later
a message m is input at the A-interface, then the channel outputs at the
E-interface the value m⊕m′ ⊕ c′.

Note that although the description of the channel differs for the case where
input at A.1? is provided before input at E.1? is provided and the case where
the inputs appear in the opposite order, the channel is still a monotone system
in the sense of Section 3.4.1. The output at the E-interface is a uniformly
distributed string of ` bits, and the output at the B-interface equals the XOR
of the input at the A-interface and the input and output at the E-interface.

The converter which is necessary to assure that the pair of
{0,1}`
−⊕→• and

{0,1}`
−⊕→•⊥ = ◦− →◦⊥ is a well-defined resource is again easy to describe: Upon
input a bit string c ∈ {0, 1}` at interface In.1!, output In.1?← c.

4.1.5 Secure Channels

A secure channel protects both the authenticity and the confidentiality of the
transmitted messages. Similar discussions as in the cases of authenticated
channels in Section 4.1.3 and about confidentiality in Section 4.1.4 also apply
here. Analogously to the case of authenticated channels, we again describe
an ordered and an unordered version of the channel; and analogously to the
case of confidential channels we consider channels that leak only the message
length.

Unordered secure channel. The unordered secure communication chan-
nel •−��• described as System 18 formalizes the guarantee that the mes-
sages are transmitted confidentially and authentically, but the attacker at the
E-interface can deliver the messages in an arbitrary order, and each message
can potentially be delivered multiple times. The inputs and outputs at in-
terface E are again labeled by numbers i ∈ N. The outputs E.1!, E.2!, . . .
are values in N and are set to the lengths of the corresponding messages in-
put at interface A. The inputs E.1?, E.2?, . . . are values in N and specify, as
for •−��, which message shall be output at the B-interface.

4.1. COMMUNICATION CHANNELS 107

System 18 Unordered secure channel •−��•

1: once ∀j ≤ i : A.j? 6= �
2: E.i!← |A.i?|
3: end.

4: once ∀j ≤ i : B.j! 6= �

5: k ← E.i?
6: once A.k? 6= �
7: B.i!← A.k?
8: end.
9: end.

Consistently with the previously described channels, there is again a con-
verter that, upon receiving an output at E.i! of •−��•, sets the input E.i?← i
to achieve the behavior of •−��•⊥ = ◦−�◦⊥.

Ordered secure channel. The secure communication channel •−�• de-
scribed as System 19 formalizes the guarantee that the messages input at the
A-interface are output at the B-interface in the same order, and no messages
can be dropped in between. Interface E outputs the lengths of the messages
input at the A-interface, and takes as input unary messages which trigger the
output of the respective messages at the B-interface, which models that the
attacker can always suppress the communication from A to B by not provid-
ing these inputs. Such a channel is useful in applications because it guaran-
tees that a stream of messages is transmitted securely from A to B, the only
capability of the attacker is to interrupt the communication.

Roughly, this channel can be seen as the goal of protocols like TLS and ssh.
The case of IPsec is slightly different, because the protocol does not guarantee
that all messages (in a sequence) are delivered [Jos14].

System 19 Ordered secure channel •−�•

1: once ∀j ≤ i : A.j? 6= �
2: E.i!← |A.i?|
3: end.

4: once ∀j ≤ i : E.j? = �∧A.j? 6= �
5: B.i!← A.i?
6: end.

The outputs E.1!, E.2!, . . . are values in the set N; the channel outputs
the length of the respective messages input at the A-interface. The inputs
E.1?, E.2?, . . . are unary and only take a value �; the understanding is that as
soon as the inputs A.i? and E.i? are provided, the variable B.i! is defined to
be equal to A.i?. The single-use channel •− →• is again obtained by restricting

108 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

System 19 to inputs A.1? and E.1? and outputs B.1! and E.1!.

4.1.6 Parametrized Channels

To formalize construction statements in which the advantage of the distin-
guisher is parametrized depending on the assumed “use” of the scheme, such
as the number of communicated bits or messages, we describe in this sec-
tion families of monotone binary outputs that formalize such a restriction
and are useful to make parametrized construction statements as described in
Section 3.4.2.

Number of communicated bits. The number of communicated bits is for-
malized by an MBO that becomes 1 once more than ` bits have been:

• input at interface A, or

• output at interface B, or

• input at interface E, or

• output at interface E.

A channel parametrized via this MBO is written as
` bits

◦−�◦. The MBO for
converters is defined analogously: Once ` bits have been input or output at
the outside interface, the MBO becomes 1.

Number of communicated messages. A different type of parametrization
considers the number of communicated messages. This is also formalized by
an MBO that becomes 1 once more than q messages have been input or output
at any interface (analogously to the MBO above). A channel parametrized via
this MBO is written as

q msgs

◦−�◦. The MBO for converters is defined analogously:
Once q messages have been input or output at the outside interface, the MBO
becomes 1.

4.2 Keys and Shared-Randomness Resources

An important type of resource for cryptographic protocols is shared random-
ness. This can be a cryptographic key (a shared random bit string) or “in-
teractive” objects like a shared random function. Cryptographic schemes that
make use of shared randomness are often referred to as “symmetric” schemes
such as symmetric encryption schemes or message authentication codes, as

4.2. KEYS AND SHARED-RANDOMNESS RESOURCES 109

opposed to “asymmetric” public-key schemes where the key material used by
the two involved parties is different.

4.2.1 General Shared-Randomness Resources

For a random system R, we define the system
↔
R as the resource with inter-

faces A, B, and E, where access to the same instance of the random system
is provided to both A and B. The E-interface provides the capability to in-
terrupt the access of the parties to the resource, but does not allow to further
access the contained random system.

As an example, consider a uniform random function (URF) Fn : {0, 1}∗ →
{0, 1}n, which can be viewed as a random system Fn taking a sequence of
inputs X1, X2, . . . ∈ {0, 1}∗ and, for each input Xi, providing an output Yi ∈
{0, 1}n. The URF, as a random system, responds to an input Xi with uniform
random outputs Yi ∈R {0, 1}n, with the restriction that if two inputs Xi = Xj

match, then the outputs Yi = Yj also match.

The shared uniform random function is described as a resource
↔
Fn in

Systems 20 and 21. The resource takes at the A- and B-interfaces inputs
A.1?, A.2?, . . . and B.1?, B.2?, . . . with values in {0, 1}∗, and provides out-
puts A.1!, A.2!, . . . and B.1!, B.2!, . . . with values in {0, 1}n.

System 20 Shared URF without attacker
↔
Fn⊥

1: Choose instance Fn : {0, 1}∗ → {0, 1}n

2: once ∀j ≤ i : A.j? 6= �
3: A.i!← Fn(A.i?)
4: end.

5: once ∀j ≤ i : B.j? 6= �
6: B.i!← Fn(B.i?)
7: end.

At the E-interface,
↔
Fn takes “trigger” inputs to “activate” the interfaces A

and B. These inputs E.A? and E.B? are unary and only take the fixed
value “�.” The trigger input at the E-interface allows to take into account
that shared-randomness resources are usually constructed from cryptographic
keys, and these are in turn constructed via a key-establishment protocol which
can be delayed or interrupted by the attacker.

110 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

System 21 Shared URF
↔
Fn

1: Choose instance Fn : {0, 1}∗ → {0, 1}n

2: once (E.A? 6= �) ∧ (∀j ≤ i : A.j? 6= �)
3: A.i!← Fn(A.i?)
4: end.

5: once (E.B? 6= �) ∧ (∀j ≤ i : B.j? 6= �)
6: B.i!← Fn(B.i?)
7: end.

4.2.2 Shared Secret Keys

As a particular instance of shared-randomness resources, we formalize cryp-
tographic keys. Following the above approach, we denote the random system
that takes as input a trigger (denoted “�”) and responds with a uniform κ-bit
string as Uκ and regard the shared random κ-bit string

↔
Uκ as being a cryp-

tographic key, which simply outputs a random key at both interfaces A and
B. Note that the random system Uκ takes only a single input, it is hence fully
described by the conditional distribution pUκ

Y1|X1
.

We denote the described resource by a special symbol •= =• :=
↔
Uκ and de-

scribe it formally as Systems 22 and 23. This system models the shared secret
key that is assumed by (symmetric) encryption and authentication schemes
and could result from a key establishment protocol.

Let K be a discrete set, the key space. (Usually, we consider K := {0, 1}κ
for some κ ∈ N.) A key with key space K is a resource that draws a key
k ∈ K uniformly at random and outputs it to both A and B. In particular,
both interfaces only have a single unary input A.1? and B.1? and a single
output A.1! and B.1! which takes values in K.

System 22 Key without attacker
K◦= =◦⊥

1: k←$K 2: upon A.1?
3: A.1!← k
4: end.

5: upon B.1?
6: B.1!← k
7: end.

The E-interface takes “trigger” inputs to “activate” the interfaces A and B.
These inputs E.A? and E.B? are unary and only take the fixed value “�.” The

4.2. KEYS AND SHARED-RANDOMNESS RESOURCES 111

symbol “◦= =◦” with the circles “◦” instead of the bullets “•” again indicates
that the behavior is the same for keys where the parties are authenticated and
keys where the parties are not authenticated.

System 23 Key
K•= =•

1: k←$K

2: once (A.1? 6= �) ∧ (E.A? 6= �)
3: A.1!← k
4: end.

5: once (B.1? 6= �) ∧ (E.B? 6= �)
6: B.1!← k
7: end.

Unilaterally authenticated keys. A shared key is said to be unilaterally au-
thenticated or unilateral if only one of the two parties has the guarantee that
the key is indeed shared with the intended partner, the other party has no
such guarantee. We describe this guarantee as a resource = =• that is more
formally specified as System 24. In case no attacker is present, the resource
simply outputs a uniform random key to both A and B, which is exactly the
same behavior as specified in System 22.

The A and B-interfaces of the resource = =• are similar to the mutu-
ally authenticated case. The E-interface has three inputs E.A?, E.B?, and
E.key?. The input E.B? is binary (i.e., takes a value in {0, 1}) and deter-
mines that either (in case E.B? = 0) the server shares a secret key with the
client, or (in case E.B? = 1) the server shares a key with the attacker. In the
first case, i.e. E.B? = 0, a uniformly random key is output at interface B.1!,
and upon input a unary “trigger” message at E.A?, the same key is also out-
put at interface A.1!. In the second case, i.e. E.B? = 1, upon receiving a
value k ∈ K as input E.key?, this value k is output at interface B.1!.

The unilateral key captures what is achieved by a key establishment proto-
col where only one of the parties is authenticated. This scenario is prevailing
in the Internet, where most protocols have a client-server structure and only
the server has a certified public key.

4.2.3 Parametrized Randomness Resources

The shared-randomness resources like uniform random functions and uniform
random permutations can also be parametrized. The typical parametrization
is in terms of the number of evaluations via the A and B-interfaces. This

112 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

System 24 Unilateral key = =•
1: k←$K

2: once (B.1? 6= � 6= E.key?) ∧ (E.B? = 1)
3: B.1!← E.key?
4: end.

5: once (B.1? 6= �) ∧ (E.B? = 0)
6: B.1!← k
7: end.

8: once (A.1?) ∧ (E.B? = 0) ∧ (E.A? 6= �)
9: A.1!← k

10: end.

parametrization is formalized by an MBO that becomes 1 once more than
q queries have been made at interface A, or more than q queries have been
made at interface B. A resource R parametrized by this MBO is written as
R|q. The MBO for converters is defined analogously: Once q queries have
been made at the outside interface, the MBO becomes 1.

4.3 Message Authentication

Message authentication can be achieved based on a shared randomness re-
source. In this section, we show two constructions. The first construction is
based on a shared uniform random function and is implemented by simply
evaluating the random function on the message and appending the output to
the original message. As a formula, the achieved construction can be written
as (↔

F,−�
)

aut−−−→ •−��,

where
↔
F denotes the shared URF, −� a multi-message insecure channel,

and •−�� an unordered authenticated channel as described in Section 4.1.3.
Here, we denote by aut the scheme where the sender appends the output of
the URF to the message, and the receiver checks whether the received value
equals the one obtained by also evaluating the URF on the message.

We also show that a weakly unforgeable MAC scheme achieves a simi-
lar construction. Indeed, for a protocol mac based on a MAC function (but

4.3. MESSAGE AUTHENTICATION 113

otherwise similar to aut) the following construction is achieved:

(•= =•,−�)
mac−−−→ •−��.

The protocol mac computes the MAC function using the message and the
shared secret key and appends the obtained tag to the message. The receiver,
for a received pair of message and tag, checks whether the tag matches the
message with respect to the shared key. The security proof is a reduction from
the WUF-CMA property of the MAC scheme.

4.3.1 Construction Based on a Shared URF

In a message-authentication protocol that uses a shared uniform random func-
tion (URF), the sender can simply evaluate the URF on a given messagem and
send the message m together with the authentication tag t obtained by the
URF. The receiver, who also has access to the URF, can also evaluate the URF
on a received message m′ and compare the output t′ of the URF to the re-
ceived authentication tag. He will accept the received message only if the
received and the computed tags match. The intuition behind the protocol is
that an attacker, to inject or modify a message such that it is accepted by the
receiver, would have to predict the output of the URF. Theorem 4.2 proven
below confirms that this intuition is correct and the protocol is indeed secure.

Let M := {0, 1}∗ be the message space and consider a shared URF Fn :
M → {0, 1}n as described in Section 4.2.1. The simple protocol described
above, which we formalize as a pair aut = (aut, chk-aut) of converters below,
constructs an authenticated channel •−�� (with message space M) from a
shared URF

↔
F and an insecure channel −� (with message space M). The

two settings that occur in the security statement are depicted in Figure 4.1.
The two converters aut and chk-aut are described in more detail as follows,

with the understanding that they process the incoming inputs (or messages)
in order.

aut: Upon input a message m ← Out.i? ∈ M, query In.1.i? ← m at the first
inside sub-interface,1 obtaining a value t← In.1.i! ∈ {0, 1}n. Output the
concatenation m.t at the second inside sub-interface, i.e., In.2.i?← m.t.

chk-aut: Upon input a value x ← In.2.i! ∈ {0, 1}∗ at the second inside sub-
interface, if |x| < n then halt. Otherwise, parse m′.t′ ← x (this is
unique, because t′ ∈ {0, 1}n) and query In.1.i? ← m′ at the first in-
side sub-interface, obtaining t′′ ← In.1.i! ∈ {0, 1}n. If t′ = t′′, then
output Out.i!← m′ at the outside interface.

1Recall that at the inside interface of a converter, the interface labels for input and output are
reversed, as described on page 97.

114 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

↔
F

−�
aut chk-autA B

E

(a) The authentication protocol aut =
(aut, chk-aut) applied to the shared URF
and the insecure channel.

•−��

σaut
A B

E

(b) The authenticated chan-
nel •−�� with a simulator σaut at
the E-interface.

Figure 4.1: The two settings involved in the of construction statement about
the authentication protocol.

The message flow of the MAC protocol applied to the resources
↔
Fn and −�

is depicted in Figure 4.2. The interface names used in the descriptions of the
systems are used to label the arrows. Since the shared URF

↔
Fn has the label 1

in the tuple, and the insecure channel −� has the label 2, the interfaces
connect as shown in the figure.

↔
Fn

−�

aut

ch
k-
au
t

m

m

t

m.t m′.t′

m′

t′′
m′ or �

m.t m′.t′

Out.i?

In.1.i?

In.1.i!

In.2.i?

A.i?

A.i!
E.A?E.B?

A.i?

E.i!E.i?

B.i!

Out.i!

In.1.i?

In.1.i!

In.2.i!

Figure 4.2: The message flow in the authentication protocol.

The construction is proven relative to a simulator σaut which behaves as
follows. It internally keeps a URF2 R : M → {0, 1}n and, upon receiving an
input mi ← In.i! ∈ M at the inside interface (i.e., from the authenticated
channel •−��), and once Out.1.A? = �,3 output Out.2.i! ← mi.R(mi) at the
outside interface. Upon receiving in input m′.t′ ← Out.2.j? at the outside
interface, once the input Out.1.B? = � has been provided at the outside in-

2This can be done efficiently by sampling the URF adaptively.
3That sub-interface corresponds to the A-sub-interface of the E-interface of

↔
F, hence the

trigger means that A can now use the URF.

4.3. MESSAGE AUTHENTICATION 115

terface and m′.t′ = mi.ti for some i ∈ N, then output In.j? ← i at the inside
interface.

The composition of the simulator σaut and the authenticated channel •−��
is depicted in Figure 4.3, which shows how the two systems connect and
which messages are exchanged. The interface labels are indicated for each
message input or output by a system. The simulator is a discrete monotone
system in the sense of Definition 3.18 because each output at the outside in-
terface only depends on the corresponding input at the inside interface, and
an input at the inside interface is given once the corresponding output has
been provided at the outside interface and the message is in the buffer of the
channel.

•−��

σaut

m mj or �

m j ∈ N or �

m.t m′.t′

A.i? B.i!

E.i! E.i?

In.i! In.i?

O
u
t.
2
.i
!

O
u
t.
2
.i
?

O
u
t.
1
.A

?
O
u
t.
1
.B

?

Figure 4.3: The message flow in the execution with the simulator.

The proof of the following theorem formalizes that, to break the security
of the scheme, the attacker would have to predict an output of the URF. Since
the values of the URF are uniformly random, the probability of succeeding
in q queries is bounded by q

2n , where n is the output length of the URF. The
bound we prove is larger than expected by a factor of 2. The reason lies
in the simulator that we describe; it is a monotone discrete system. In a
generalization of the framework where non-monotone systems are allowed,
one can prove a bound of q

2n (instead of q
2n−1).

Theorem 4.1. Let aut = (aut, chk-aut) be the protocol described above. For the
simulator σaut, (↔

Fn,−�
)

p aut,σaut,q/2
n−1

==========⇒ •−��,

where the statement is parametrized in q ∈ N for the resources
↔
F|qn ,

q msgs

−�,
and

q msgs

•−��.

116 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

Proof. For the availability condition, we show that

autAchk-autB
((↔

Fn

)|q
⊥
,
q msgs

−�⊥

)
≡

q msgs

•−��⊥.

This follows directly from the correctness of the scheme: for a message m ∈
M, the shared URF responds with the same tag t ∈ {0, 1}n at the A- and B-
interfaces, hence chk-aut accepts all tags generated by aut. This means that in
both cases an input of a message m at the A-interface will lead to an output
of the same message at the B-interface. In both cases, the system provides
output until q messages have been input at the A-interface.

For the security condition, we define

Rq := autAchk-autB
(↔
F|qn ,

q msgs

− →
)

and Sq := σaut
E

q msgs

•−��.

The systems Rq and Sq are random systems which input and output tuples in
the set X (J) (for J = I ×Λ). We define an MBO A1, A2, . . . that becomes 1
as soon as an input

(
m̃, t̃

)
∈ M× {0, 1}n is provided at the E-interface such

that m̃ was not input at the A-interface before, but R(m̃) = t̃ according to the
URF R :M→ {0, 1}n within

↔
Fn (for Rq) or σaut (for Sq), respectively.

Both R̂q and Ŝq are conditionally equivalent to a system H that behaves
like Rq but whenever a message m is input at the A-interface such that previ-
ously pairs m.t1, . . . ,m.t` have been input at the E-interface, the system out-
puts a pair m.t with t ∈R {0, 1}n \ {t1, . . . , t`}. As this is the same distribution
that is also generated by Rq given that the MBO is 0 (since the output of the
URF, given that it is not in the set {t1, . . . , tn}, is uniform over the remaining
values. This means that R̂q |≡ H. Analogously it holds that Ŝq |≡ H, since
if none of the “guesses” is correct, the values output at the B-interface are
exactly the messages for which the attacker used a tag that was output at the
E-interface before, and system Sq behaves exactly like H. By Theorem 2.16,
this implies that the distinguishing advantages J(Rq | H)K and J(Sq | H)K can
each be bounded by the probability of non-adaptively provoking the respec-
tive MBO.

As provoking the MBO corresponds to guessing the output of an n-bit
uniform random function, each of these probabilities can be bounded by the
probability of (non-adaptively) guessing a uniformly random n-bit string in q
attempts, which is q

2n . Overall, we obtain

J(Rq | Sq)K ≤ J(Rq | H)K + J(H | Sq)K ≤
r
R̂q

z
+
r
Ŝq

z
≤ q

2n
+

q

2n
,

which concludes the proof.

4.3. MESSAGE AUTHENTICATION 117

The proof extends to URFs which are defined on some set M ⊆ {0, 1}∗.
The scheme then constructs an authenticated channel with message spaceM
from the shared URF and an insecure channel which has message space M′
such that m.t ∈M′ for all m ∈M and t ∈ {0, 1}n.

The shared URF can be constructed from a shared secret key such as •= =•
by applying a pseudo-random function at the A- and B-interfaces. This can
be phrased as an independent construction step which achieves

•= =• prf−−−→
↔
Fn

and proven for any pseudo-random function with outputs in {0, 1}n under the
corresponding assumption, where prf is the protocol in which A and B simply
evaluate the PRF. The composition theorem then implies that

(•= =•,−�)
aut◦〈prf〉1−−−−−−−→ •−��.

4.3.2 Construction Based on Weakly Unforgeable MACs

The (unordered) authenticated channel can alternatively be constructed from
an insecure channel and a shared secret key by a protocol based on a weakly
unforgeable MAC scheme. Similarly to the protocol in Section 4.3.1, the
sender evaluates the MAC function on the message and the shared key, and
appends the computed tag to the message. The receiver parses the received
bit string as a pair of message and tag and uses the check function defined by
the MAC scheme. (For most MAC schemes, this is defined as computing the
tag for the received message and comparing the computed tag to the received
one.) We describe the scheme as explicitly sending the pair of message and
tag; if both values are bit strings and the tag has a fixed length, the pair can
simply be encoded by concatenating the two strings as in Section 4.3.1.

Let MAC = (mac, check) be a MAC scheme with key space K, message
spaceM, and tag space T as defined in Section 2.4.2. Each such MAC scheme
gives rise to a protocol mac = (tag, chk) as follows, where the messages are
processed in order (as in the protocol in Section 4.3.1).

tag: Initially, output In.1.1? at the inside interface (to retrieve the key). Upon
input a message m ← Out.i? ∈ M at the outside interface (and once
the key k ∈ K is obtained at the inside interface In.1.1!), compute t ←
mac (k,m) and output the pair (m, t) at the inside interface In.2.i?.

chk: Initially, output In.1.1? at the inside interface (to retrieve the key). Upon
input a pair (m′, t′)← In.2.i! ∈M×T at the inside interface (and once

118 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

the key k ∈ K is obtained at the inside interface In.1.1!), if

check (k,m′, t′) = true,

then output Out.i!← m′ at the outside interface.

The construction is proven relative to a simulator σmac which initially sam-
ples a key k←$K and initializes a buffer B ← ∅ and then behaves as follows:

• Upon receiving the i-th message m ← In.i! ∈ M at the inside in-
terface, and once the input � has been provided at the outside sub-
interface Out.1.A?, compute t ← mac(k,m), set B ← B ∪ {(i,m)} and
output (m, t) at the outside interface Out.2.i!.

• Upon receiving input (m̃, t̃) ← Out.2.i? ∈ M × T at the outside in-
terface, and once the input � has been provided at the outside sub-
interface Out.1.B?, if check(k, m̃, t̃) = true and once there is an j ∈ N
with (j, m̃) ∈ B, then output j at the inside interface In.i?.

The construction is proven based on the assumption that the MAC scheme
MAC is weakly unforgeable. In the proof of the theorem, we describe an
explicit reduction system Cmac that translates a distinguisher for the distinc-
tion problem from the construction statement into a game winner for weak
unforgeability that achieves the same performance.

Theorem 4.2. Let MAC be a MAC scheme and mac = (tag, chk) be the protocol
based on MAC as described above. For the simulator σmac,(

K•= =•,
M×T
−�

)
p mac,σmac,(0,ε)
=========⇒

M
•−��.

The statement is parametrized in q ∈ N for the resources
q msgs

−� and
q msgs

•−��, and
the performance measure εq :=

q
GWUF-CMA
q (MAC)

y
◦Cmac for a reduction Cmac

explicitly described in the proof.

Proof. For the availability condition, we show

tagAchkB
(
•= =•⊥,

q msgs

−�⊥
)

≡
q msgs

•−��⊥.

This follows directly from the correctness of the MAC scheme: for the key k ∈
K output by •= =• and all messages m ∈ M, check(k,m,mac(k,m)) = true
and hence chk accepts all tags generated by tag. In both cases, the system
provides output until q messages have been input.

For the security condition, we define

Rq := tagAchkB
(
•= =•,

q msgs

−�
)

and Sq := σmac
E

q msgs

•−��,

4.3. MESSAGE AUTHENTICATION 119

which are random systems. We describe a reduction system Cmac which at
the left interface provides three sub-interfaces A, B, and E, and behaves as
follows:

• On input a message m ∈ M at the left A-sub-interface, query tag(m)
at the right interface to obtain a tag t ∈ T . Output (m, t) at the left
E-sub-interface.

• On input a pair
(
m̃, t̃

)
at the left E-sub-interface, query vrf

(
m̃, t̃

)
at the

right interface. If the return value is true, then output m at the B-sub-
interface.

Analogously to the behavior of the protocol and the constructed channel, the
converter Cmac processes the inputs at the A- and E-sub-interfaces in order:
the i-th input is processed only after all preceding inputs, i.e., those at sub-
interfaces corresponding to a number j with j < i, have been processed. The
converter Cmac is equipped with the MBO that formalizes the restriction on
the number of messages; in particular, the system also takes only q messages
at the left A- and E-sub-interfaces before the MBO becomes 1. This reduction
system satisfies Rq ≡ CmacG

WUF-CMA
q , because both systems compute the tags

and the MAC verification in the same way and output the same messages.
Both systems provide output as long as at most q messages have been input
at both the A- and E-interfaces.

Then we define an MBO A1, A2, . . . that becomes 1 as soon as an in-
put

(
m̃, t̃

)
∈ M× T is provided at the E-sub-interface such that m̃ was not

input at the A-sub-interface before and check(k, m̃, t̃) = true. This MBO can
be applied to both systems Rq and Sq, and the systems behave equivalently
as long as the MBO remains 0. This holds because the outputs are com-
puted in exactly the same way, and the systems provide output as long as at
most q messages have been input at both the A- and E-interfaces. As the MBO
A1, A2, . . . becomes 1 only exactly if the game GWUF-CMA

q is won, we obtain

R̂q

g
≡ Ŝq

g
≡ CmacG

WUF-CMA
q ,

and Lemmas 2.14 and 2.4 imply that

J(Rq | Sq)K ≤
q
CmacG

WUF-CMA
q

y
=

q
GWUF-CMA
q

y
◦ (·Cmac),

which concludes the proof.

Weak unforgeability is considered the standard property for MAC schemes
in the literature; our result shows that if the MAC scheme is used in the
straightforward way, one indeed achieves a authentication guarantee in terms
of the constructed channel.

120 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

4.3.3 Constructing Ordered Authenticated Channels

The channel •−�� constructed in the previous sub-sections is only of limited
use for applications. The reason is that the only guarantee it formalizes is
that any message that is delivered at the B interface has indeed been input
at the A-interface before, but there is no guarantee on the order in which
the messages are delivered, or even on the number of times a certain mes-
sage is delivered. This can be addressed by adding sequence numbers to the
messages.

Consider the following protocol seq = (seq, seq-chk) that behaves as fol-
lows. Analogously to the converters described before, the converters process
the messages in the order of their sub-interface identifiers, i.e., seq processes
the inputs in the order Out.1?,Out.2?, . . . , and seq-chk processes the received
messages in the order In.1!, In.2!,

• The converter seq, upon input the i-th message mi ← Out.i? at the
outside interface, outputs the pair (i,mi) at the inside interface In.i?.

• The converter seq-chk keeps a counter i ∈ N which is initialized to 0.
Also, it keeps a buffer B which is initialized to be empty and stores pairs
in N ×M. Upon input a pair (j,m) at the inside interface: If j > i + 1
and there is no element (j,m′)← In.k! ∈ B, once In.l! 6= � for all l ≤ k,
set B ← B ∪ {(j,m)}. If j = i + 1, then set i ← j and output m
at Out.j!. Also, while there is an element (i+ 1,m′) ∈ B, output m′, set
B ← B \ {(i+ 1,m′)} and set i← i+ 1.

Out goal is to show that the protocol seq constructs the channel •−�
from the channel •−��. This holds with respect to the simulator σseq, which
behaves as follows. σseq keeps a counter n ∈ N (initially 0) and a buffer B (ini-
tially empty) for keeping track of messages that are still to be delivered. On
input the i-th message mi ← In.i! at the inside interface, σseq outputs (i,mi)
at the outside interface Out.i!. Upon an input k ∈ N at the outside inter-
face Out.i?, if k > n + 1 then set B ← B ∪ {k}. If k = n + 1, output � at the
k-th inside sub-interface In.k? and set n← k. Also, while there is an element
(n+ 1,m′) ∈ B, output � at the (n + 1)-th inside sub-interface In.(n + 1)?,
set n← n+ 1.

Theorem 4.3. Let seq = (seq, seq-chk) be the protocol described above. For the
simulator σseq,

N×M
•−�� p

seq,σseq,(0,0)
========⇒

M
•−�,

where the statement is parametrized in q ∈ N for the resources
q msgs

•−�� and
q msgs

•−�.

4.4. SYMMETRIC ENCRYPTION 121

Proof. For the availability condition, we show

seqAseq-chkB
q msgs

•−��⊥ ≡
q msgs

•−�⊥.

This is immediate because the channel •−��⊥ will (as •−�) deliver all mes-
sages, and the sequence numbers generated by seq will be checked success-
fully (and removed) by seq-chk.

For the security condition, we define

Rq := seqAseq-chkB
q msgs

•−�� and Sq := σseq
E

q msgs

•−�.

The two systems can be seen to be equivalent as follows: The i-th input mes-
sage mi at the A-interface will lead to an output (i,mi) at the E-interface
in both cases. Also, an input j ∈ N at the E-interface will lead to the same
results:

• If the j-th message has already been delivered to B, then no message
will be output.

• If the (j − 1)-th message has not yet been delivered to B, then there is
no immediate output.

• Otherwise, the j-th message mj is output at the B-interface. Moreover,
if inputs j + 1, j + 2, . . . have already been provided before, the corre-
sponding messages mj+1,mj+2, . . . are also output at the B-interface.

This concludes the proof.

4.4 Symmetric Encryption

Symmetric encryption protects the confidentiality of messages transmitted be-
tween two parties that share a secret key. Intuitively, this means that the en-
crypted message (the ciphertext) transmitted from a sender A to a receiver B
does not leak information about the contents of the message (other than,
for example, its length). The natural application of a symmetric encryption
scheme is to construct a secure channel from an authenticated channel and a
shared secret key.

4.4.1 The One-Time Pad and Stream Ciphers

The one-time pad encryption scheme is defined on bit strings. A random
key, which is a bit string of the same length as the message, is added to the

122 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

message bit-by-bit. The first proof of the one-time pad has been given by
Shannon [Sha49], who showed that the ciphertext, as a random variable, is
independent of the plaintext and therefore does not contain any information
about the message. The constructive perspective on the one-time pad has
been described by Maurer [Mau11, Mau14]; we formalize the corresponding
proof in the formal framework introduced here.

We describe the one-time pad for a single message of arbitrary length. The
protocol can be viewed as assuming two resources: First, a stream of key bits
which are described as 〈 1-bit•= =•〉, that is, an unbounded sequence of uniformly
random bits shared by A and B. The second assumed resource is a channel
over which the ciphertext is transmitted from the sender A to the receiver B.
The message space of this channel is {0, 1}∗. The protocol based on the one-
time pad is then described as a pair otp = (otp-enc, otp-dec) of converters for
the sender and the receiver. These converters behave as follows.

otp-enc: The converter takes at the outside interface Out.1? an input m ∈
{0, 1}∗ and retrieves at the first inside sub-interface |m| key bits (by
providing input at In.1?, . . . , In. |m|?), call the concatenation of the ob-
tained bits k. It then computes c ← m ⊕ k and outputs it at the inside
sub-interface In.2.1?.

otp-dec: The converter otp-dec receives a ciphertext c′ at its inside sub-inter-
face In.2.1! and retrieves at the first inside sub-interface |c′| key bits anal-
ogously to otp-enc, call the concatenation k′. It then computes m′ ←
c′ ⊕ k′ and outputs it at the outside interface.

The authenticated case. If the ciphertext is transmitted via an authenti-
cated communication channel, then the one-time pad indeed achieves secure
communication [Mau11]. Constructively, this is phrased as(〈

1-bit•= =•
〉
, •− →

)
otp−−−→ •− →•.

The constructed secure channel leaks the length of the transmitted message,
which is due to the fact that the message and the ciphertext have the same
length, and shows up in the following security proof because the simulator
has to generate a ciphertext that has the same distribution as the ciphertext
generated by the encryption converter. The application of the one-time pad
in the described scenario is depicted in detail in Figure 4.4.

The construction is shown relative to the simulator σotp, which on in-
put n ∈ N at the inside interface (and once sufficiently many trigger inputs
Out.1.1.A?, . . . ,Out.1. |m| .A? have been provided for the key bits), outputs
a random string c̃ ∈ {0, 1}n at the outside interface. The trigger input �

4.4. SYMMETRIC ENCRYPTION 123

〈 1-bit•= =•〉

•− →
ot
p
-e
n
c

ot
p
-d
ecm

�, . . .

k1, . . .

c c

�, . . .

k1, . . .
m

c �

Out.1?

In.1.i?

In.1.i!

In.2.1?

A.i?

A.i!
E.i.A?E.i.B?

A.1?

E.1!E.1?

B.1!

Out.1!

In.1.i?

In.1.i!

In.2.1!

Figure 4.4: The message flow in the one-time-pad-based protocol.

at the second outside sub-interface Out.2.1? (i.e., corresponding to •− →) is
forwarded to the inside interface In.2.1? (i.e., to •− →•), once the trigger in-
puts Out.1.1.B?, . . . ,Out.1. |m| .B? have been provided for the key bits. The
setting with the constructed channel •− →• and the described simulator σotp
is depicted in Figure 4.5.

•− →•

σotp

m m

|m| �

c �

A.1? B.1!

E.1! E.1?

In.1! In.1?

O
u
t.
2
.1

!
O
u
t.
2
.1

?

O
u
t.
1
.i
.A

?
O
u
t.
1
.i
.B

?

Figure 4.5: The message flow in the execution with the simulator.

The following theorem shows that the one-time-pad-based protocol in-
deed achieves the described construction.

Theorem 4.4. Let otp = (otp-enc, otp-dec) be the protocol described above. For
the simulator σotp,(〈

1-bit•= =•
〉
, •− →

)
p
otp,σotp,(0,0)

========⇒ •− →•,

which is a statement parametrized in ` ∈ N for the resources 〈 1-bit•= =•〉[`],
` bits

•− →,

and
` bits

•− →•.

124 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

Proof. For the availability condition, we show that

otp-encAotp-decB
(〈

1-bit•= =•⊥
〉

[`]
,

` bits

•− →⊥
)

≡
` bits

•− →•⊥.

This is easy to see since for a message m and the first |m| key bits k =
k1 · · · k|m|, otp-enc computes c = m ⊕ k, and otp-dec computes m′ = c ⊕ k =
m⊕k⊕k = m. Hence, on input a message m at the A-interface, both systems
output m at the B-interface. In both cases, the system provides output unless
the message input is longer than ` bits.

For the security condition, we show that

otp-encAotp-decB
(〈

1-bit•= =•
〉

[`]
,

` bits

•− →
)

≡ σotp
E

` bits

•− →•.

On input a message m at the A-interface (and once sufficiently many trigger
inputs have peen provided for the key bits), both systems output a uniformly
random |m|-bit string at the E-interface. This holds since otp-enc computes
c = m⊕k with uniformly random bits k = k1 · · · k|m|, and σotp chooses a fresh
|m|-bit string. Upon input the trigger input “�” at the interface E.2.1? (and
once sufficiently many trigger inputs have peen provided for the key bits),
both systems output m at the B-interface (by the same argument as for the
availability). Also here, both systems provide output unless the message input
is longer than ` bits.

As explained by Maurer [Mau11], the constructive proof of the one-time
pad extends to practical encryption schemes such as stream ciphers and the
counter-mode encryption of a block cipher since one can show that the key
stream 〈 1-bit•= =•〉 is constructed by such schemes. The composition theorem
then allows to conclude the security of these “computational” schemes.

The unauthenticated case. In principle, one could send the ciphertext gen-
erated by the one-time pad over an insecure channel. If the ciphertext, how-
ever, is modified during the transmission, the receiver will not detect this
modification (since every bit string is a valid ciphertext). The decryption will
then result a message that is different from the one input by the sender. Con-
cretely, if an attacker replaces a ciphertext c by a different ciphertext c′, then
the receiver will compute m′ = k ⊕ c′, and as by the definition of the encryp-
tion k = m⊕c, the computed message is m′ = (m⊕c)⊕c′ = m⊕(c⊕c′). This
means that the attacker can, by replacing the ciphertext, add an XOR mask
c ⊕ c′ of his choice to the transmitted message. We formalize the obtained
guarantee by the XOR-malleable confidential channel, denoted −⊕→•, which

4.4. SYMMETRIC ENCRYPTION 125

is confidential but allows to input a mask at the E-interface, which is then
added to the transmitted message. The one-time pad hence also achieves the
construction (〈

1-bit•= =•
〉
,− →

)
otp−−−→ −⊕→•,

which we describe here in more detail.
The XOR-malleable confidential channel −⊕→• has been described for

fixed-length messages in Section 4.1.4, for the case of variable-length mes-
sages the channel is specified as System 25.4 A message m ∈ {0, 1}n from the
sender is encrypted by adding the key k ∈ {0, 1}n bit-by-bit, resulting in the
ciphertext c = m ⊕ k ∈ {0, 1}n. If the attacker replaces the ciphertext c by
c′ ∈ {0, 1}n′ , where possibly n 6= n′, then the first min(n, n′) bits obtained by
the receiver are the XOR of the corresponding bits of m, c, and c′. If n′ > n,
then the subsequent bits are uniformly random.

In an execution of the protocol based on the one-time pad, the attacker
can also inject a message to the receiver B before the sender A has input
a message. In that case, for an injected ciphertext c′ of length n′ = |c′|,
the receiver B will obtain an n′-bit uniformly random string m′. If later the
sender inputs a message m of length n, then the output at the E-interface is
computed to be consistent with the output at the B-interface. (Recall that,
intuitively, the inputs and outputs have to satisfy that m⊕ c = k = m′ ⊕ c′.)

The described construction is achieved relative to the simulator σ′otp that
simply forwards the messages between the inside and the outside interface.
The construction is again achieved in a perfect sense.

Theorem 4.5. Let otp = (otp-enc, otp-dec) be the protocol described above. For
the simulator σ′otp,

(〈
1-bit•= =•

〉
,− →

)
p
otp,σ′otp,(0,0)

========⇒ −⊕→•,

which is a statement parametrized in ` ∈ N for the resources 〈 1-bit•= =•〉[`],
` bits

− →,

and
` bits

−⊕→•.

Proof. For the availability condition, we show that

otp-encAotp-decB
(〈

1-bit•= =•⊥
〉

[`]
,
` bits

− →⊥
)

≡
` bits

−⊕→•⊥.

4The fact that the resource is indeed a monotone discrete system can be verified by providing
an alternative, equivalent description in which a bit string resembling the key is sampled initially,
and the outputs are computed as in the protocol.

126 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

System 25 XOR-malleable single-use channel −⊕→•
1: upon A.1?
2: if E.1? 6= � then
3: if |A.1?| > |E.1?| then
4: x←$ {0, 1}|A.1?|−|E.1?|

5: end if
6: x← (E.1?⊕B.1!) .x
7: E.1!← A.1?⊕ (x1 · · ·x|A.1?|)
8: else
9: E.1!←$ {0, 1}|A.1?|

10: end if
11: end.
12: upon E.1?
13: if A.1? 6= � then
14: if |E.1?| > |A.1?| then
15: x←$ {0, 1}|E.1?|−|A.1?|

16: end if
17: x← (A.1?⊕ E.1!) .x
18: B.1!← E.1?⊕ (x1 · · ·x|E.1?|)
19: else
20: B.1!←$ {0, 1}|E.1?|

21: end if
22: end.

4.4. SYMMETRIC ENCRYPTION 127

This follows exactly as in Theorem 4.4. For the security condition, we show
that

otp-encAotp-decB
(〈

1-bit•= =•
〉

[`]
,
` bits

− →
)

≡ σ′otp
E ` bits

−⊕→•.

We differentiate two cases:

• If the first input is a message m ∈ {0, 1}∗ at the A-interface, both sys-
tems output a uniformly random |m|-bit string at the E-interface. This
holds since otp-enc computes c = m ⊕ k with uniformly random bits
k = k1 · · · k|m|, and −⊕→• chooses a fresh |m|-bit string. Upon input a
string c̃ at the E-interface:

– If |m| ≥ |c̃|, then both systems output (m1 · · ·m|c̃|)⊕ (c1 · · · c|c̃|)⊕ c̃
at the B-interface. This follows since (m1 · · ·m|c̃|)⊕(m1 · · ·m|c̃|) =
k1 · · · k|c̃|, which is what otp-dec computes, and the same computa-
tion is performed by −⊕→•.

– Otherwise, the first |m| bits are computed as above, and are output
at the B-interface together with |c̃| − |m| random bits. In otp-dec,
this holds because c̃|c|+1 · · · c̃|c̃| are XORed with uniformly random
key bits. In σ′otp

E−⊕→•, these bits are chosen uniformly at random
by −⊕→•.

• If the first input is a ciphertext c̃ at the E-interface, both systems out-
put a uniformly random |c̃|-bit string at the B-interface. This holds
since otp-dec computes m′ = c̃ ⊕ k with uniformly random bits k =
k1 · · · k|c̃|, and−⊕→• chooses a fresh |c̃|-bit string (upon input from σ′otp).
Upon input a string m at the E-interface:

– If |c̃| ≥ |m|, then both systems output (c̃1 · · · c̃|m|)⊕ (m′1 · · ·m′|m|)⊕
m at the E-interface. This follows since

(c̃1 · · · c̃|m|)⊕ (m′1 · · ·m′|m|) = (k1 · · · k|m|),

which is what otp-enc computes, and the same computation is per-
formed by −⊕→•.

– Otherwise, the first |c̃| bits are computed as above, and are output
at the E-interface together with |m| − |c̃| random bits. In otp-enc,
this holds because the remaining bits of the message are XORed
with uniformly random bits. In σ′otp

E−⊕→•, the remaining bits are
chosen uniformly at random.

Also here, both systems provide output unless the message input is longer
than ` bits.

128 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

The XOR-malleable channel is of course not immediately useful for appli-
cations. We show in Section 4.5.2, however, that a strongly unforgeable MAC
can be used to construct a secure channel from the XOR-malleable channel
and a shared secret key.

4.4.2 CBC-Mode Encryption

The cipher-block chaining (CBC) encryption mode of a block cipher is a widely
used encryption scheme. For instance, the widely used protocols SSL/TLS,
ssh, and IPsec all specify encryption modes based on CBC, despite the fact
that other modes such as the counter mode provide (at least) the same level
of security and, depending on the exact application, sometimes even require
weaker assumptions on the underlying primitives (no inversion queries to
the block cipher). CBC-mode encryption has first been formally analyzed by
Bellare et al. [BDJR97] in a game-based security model, and a different way
to obtain the construction statement we show in this section is to use the
result of [BDJR97] together with Theorem 4.7 from Section 4.4.3.

The CBC-mode encryption scheme is described as a pair of converters
cbcn = (cbc-encn, cbc-decn) that assumes as resources a shared n-bit uni-
form random permutation

↔
Pn (i.e., the permutation is over {0, 1}n) and a

channel with message space {0, 1}` for ` ∈ n · N. The channel constructed by
CBC-mode encryption also transmits messages in {0, 1}` for ` ∈ n · N; each
ciphertext is n bits longer than the corresponding plaintext. We show that
CBC achieves the construction(↔

P, •− →
)

cbcn−−−−→ •− →•.

An n-bit URP (as a random system) allows the permutation to be evalu-
ated both in the forward and in the backward direction. This is achieved by
describing it as a random system Pn as follows: Based on a uniform random
permutation Pn : {0, 1}n → {0, 1}n, if an input Xi = (fwd, x) for some x ∈
{0, 1}n is given, then Pn responds with Yi = Pn(x). If an input Xi = (bwd, y)
for some y ∈ {0, 1}n is given, then Pn responds with Yi = P−1

n (y). The shared
URP

↔
Pn is then obtained as described in Section 4.2.

The converters cbc-encn and cbc-decn behave as follows. Denote by m =
m1.m2. . . . the plaintext message consisting of n-bit blocks mi ∈ {0, 1}n and
input at interface A, and by c = c0.c1. . . . the generated ciphertext. The
ciphertext received by B are denoted by c′ = c′0.c

′
1. . . . , and the decrypted

plaintext by m′ = m′1.m
′
2.

cbc-encn: Upon input a message m at the outside interface, the encryption
is computed iteratively by choosing an IV c0 ∈R {0, 1}n uniformly at

4.4. SYMMETRIC ENCRYPTION 129

random and then iteratively querying, for each i ∈ [|m| /n], at the inside
interface In.1.i? ← (fwd, ci−1 ⊕mi), obtaining as response ci ← In.1.i!.
The ciphertext c = c0.c1. . . . is output at the inside sub-interface In.1.1?.

cbc-decn: Upon input a ciphertext c′ at the second inside sub-interface, the
decryption is performed by iteratively querying, for each i ∈ [|c′| /n −
1], at the inside interface In.1.i? ← (bwd, c′i), and after obtaining the
response, computing m′i ← c′i−1⊕ In.1.i!. The plaintext m′ = m′1.m

′
2. . . .

is output at the outside interface Out.1!.

If CBC-mode encryption is applied to an authenticated channel, then the
protocol indeed constructs a secure channel. In contrast to the one-time pad,
the construction is not perfect, but one obtains an error term that originates
from possible collisions in the computation.

We prove the construction relative to a simulator σcbc that, on input a
message length l ∈ n · N at the inside interface, outputs a uniformly random
(l + n)-bit string at the outside sub-interface Out.2.1!. On input the trigger
input � at the outside sub-interface Out.2.1?, σcbc outputs � at the inside in-
terface In.1?.

Theorem 4.6. For the protocol cbcn = (cbc-encn, cbc-decn) and the simula-
tor σcbc, (↔

Pn, •− →
)

p cbcn,σcbc,(`/n)2/2n

============⇒ •− →•,

which is a statement parametrized in ` ∈ n · N for the resources
↔
P
|`/n
n ,

`+n bits

•− →,

and
` bits

•− →•.

Proof. For the availability condition, we show that

cbc-encn
Acbc-decn

B

(
↔
P|`/nn ⊥,

(`+1)n bits

•− → ⊥

)
≡

`n bits

•− →•⊥.

Denote the IV as c0, and the instance of the uniform random permutation by
Pn : {0, 1}n → {0, 1}n. The ciphertext for the message m is then computed
as c0.cl with l = |m|

n , with cj = Pn(cj−1 ⊕ mj). The decryption then
computes, for each j ∈ [l], m′j = cj−1 ⊕ P−1

n (cj) = cj−1 ⊕ cj−1 ⊕mj = mj ,
which means that on input m at the sender, the receiver will output m. This
proves the correctness condition, since the constructed resource simply for-
wards the message and the MBO formalizing the usage restriction becomes 1
in the same cases.

For the security condition, we use the notation

R` := cbc-encn
Acbc-decn

B
(↔
Pn, •− →

)
and S` := σcbc

E•− →•

130 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

and consider a “hybrid” system H between R` and S` that generates the ci-
phertext at the E-interface similarly to Rq, but instead of using a shared
URP

↔
Pn, a shared URF

↔
Fn,n is used.

We then define an MBO on H that becomes 1 once two output blocks at
the E-interface collide non-trivially (that is, for mi, mj and ci−1, cj−1 with
mi⊕ ci−1 6= mj ⊕ cj−1 it holds that ci = cj). As the output distributions of R`

and H are the same (they consist of strings which are uniform from the set
of all strings for which no collision occurs), we obtain that Ĥ |≡ R` and by
Theorem 2.16 that

r(
cbc-encn

Acbc-decn
B
(
•− →,

↔
Pn

) ∣∣∣ H
)z

≤ (`/n)2

2
· 2−n.

Then, we define an MBO corresponding to collisions on the input to the URF
on H (that is, for mi, mj and ci−1, cj−1 it holds that mi ⊕ ci−1 = mj ⊕ cj−1),
and obtain that Ĥ |≡ S` (as the ciphertexts output in both cases are uniformly
distributed bit strings of the same length), and use again Theorem 2.16 to
obtain

q(
H | σcbcE•− →•

)y
≤ (`/n)2

2
· 2−n,

which together with the triangle inequality for the performance in the distinc-
tion problem concludes the proof.

The shared URP
↔
Pn can be constructed from a shared secret key using

an n-bit block cipher, the security of this scheme then follows directly by the
composition theorem. If the ciphertext is transmitted over an insecure com-
munication channel, the constructed channel is still confidential but exhibits
malleability which resembles the block structure of the encryption scheme.
(This is due to the fact that the ciphertext is split into blocks in the decryp-
tion, and each block is processed separately.) Sending a CBC ciphertext inse-
curely, however, has shown to lead to vulnerabilities such as described by, for
instance, Vaudenay [Vau02] and Albrecht et al. [APW09]. The malleability of
this channel together with the particular application in the TLS record-layer
protocol are described in Chapter 5.

4.4.3 Relation to Previous Security Notions

Various security definitions for symmetric encryption schemes exist in the
literature. The usual approach is to define a property that a scheme may
achieve, and that often corresponds to a kind of confidentiality or integrity
guarantee. The property is then defined by means of a game (as discussed
in Section 2.4.1) in which the adversary has access to oracles that allow to,

4.4. SYMMETRIC ENCRYPTION 131

for instance, encrypt plaintext messages, or to decrypt or check the validity of
ciphertexts, sometimes with additional constraints on the number or order of
queries. The adversary then has to achieve a certain winning condition which
may correspond to generating a ciphertext that satisfies a certain condition,
or to distinguish two cases in which it is provided with different sets of ora-
cles. For many of these notions, it is not clear which guarantees the proven
schemes provide when the ciphertexts are transmitted over a certain type of
network.

Recall that in Definition 2.18 we defined an encryption scheme as a pair
SC = (enc,dec) of (possibly probabilistic) functions enc : K × M → C
and dec : K × C → M∪ {�}. Such an encryption scheme can also be viewed
as a pair sc = (enc, dec) of converters as follows. As before, the inputs at
the outside interface of enc and at the second inside sub-interface of dec are
processed in order.

enc: The converter enc initially provides output at In.1.1? to retrieve the key
k ∈ K (at interface In.1.1!). Upon each input mi ← Out.i? ∈ M at the
outside interface, enc computes ci←$ enc (k,mi) and outputs ci at the
inside sub-interface In.2.i?.

dec: The converter dec initially provides output at In.1.1? to retrieve the key
k ∈ K (at interface In.1.1!). Upon each input ci ← In.2.i! ∈ C at the
inside interface, dec computes mi ← dec (k, ci) and outputs mi at the
outside interface Out.i!.

The converters are supposed to connect with the first inside sub-interface to a
key (such as •= =•) with key spaceK, and with the second inside sub-interface
to a (sequence of) channel(s).

We relate several previous definitions to constructions. In particular, we
show that an encryption scheme SC satisfies IND-CPA if and only if the de-
rived protocol sc achieves the construction

(•= =•, 〈•− →〉) sc−−→ •− →•.

If the scheme SC satisfies even IND-CCA, then the protocol sc achieves the
construction

(•= =•,−�)
sc−−→ −��•,

that is, it constructs a non-malleable unordered confidential channel. In this
case, the converse statement does not hold because of an artificial strictness
of the IND-CCA property. Last, we show that if the encryption scheme SC
satisfies both IND-CPA and INT-CTXT, then the protocol sc achieves the con-

132 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

struction
(•= =•,−�)

sc−−→ •−��•,

that is, the protocol even constructs an unordered secure channel. As in the
case of IND-CCA, the converse does not hold because INT-CTXT is artificially
strict in the same sense as IND-CCA. The material in this section is taken from
Maurer et al. [MRT12].

Indistinguishability of Ciphertexts under Chosen-Plaintext Attack—IND-
CPA

The most widely used security notion for confidentiality of a symmetric en-
cryption scheme is IND-CPA, i.e., indistinguishability (of ciphertexts) under
chosen-plaintext attack. Several variants appear in the literature, as described
in Section 2.4.3. We first show that any encryption scheme that satisfies IND-
CPA gives rise to a protocol that constructs a secure channel from a shared
secret key and an authenticated channel. We model the fact that the scheme
may be used to encrypt an arbitrary (unbounded) number of messages by de-
scribing the construction with respect to a sequence 〈•− →〉 of authenticated
channels and a sequence 〈•− →•〉 of secure channels.

The construction is shown with respect to a simulator σCPA that initially
chooses a key k←$K. Upon receiving an integer n ∈ N at the inside in-
terface (which describes the length of a transmitted message), σCPA chooses
m←$ {0, 1}n, computes c←$ enc (k,m) and outputs c at the second outside
sub-interface. Upon a trigger input at the second outside sub-interface, σCPA

outputs the trigger value at the inside interface.

Theorem 4.7. Let SC = (enc,dec) be an encryption scheme and sc be the pair
of converters described above. For the simulator σCPA,(K•= =•, 〈•− →〉

)
p sc,σCPA,(0,ε)
=======⇒ 〈•− →•〉 ,

where the symbols refer to sequences 〈•− →〉[q] and 〈•− →•〉[q], and performance
measures εq =

q(
GIND-CPA

0,q (SC)
∣∣ GIND-CPA

1,q (SC)
)y
◦ (·CCPA) for a reduction con-

verter CCPA described in the proof.

Proof. The availability condition means that for each q ∈ N, the equation

encAdecB
(K•= =•, 〈•− →⊥〉[q]

)
≡ 〈•− →•⊥〉[q]

holds. This follows directly from the correctness of the encryption scheme
according to Definition 2.18, and by the fact that both systems stop after
receiving exactly q inputs at the A-interface.

4.4. SYMMETRIC ENCRYPTION 133

For the security condition, we describe a converter CCPA such that(
encAdecB

(K•= =•, 〈•− →〉[q]
) ∣∣∣ σCPA

E 〈•− →•〉[q]
)

=
(
CCPAG

IND-CPA
0,q (SC)

∣∣ CCPAG
IND-CPA
1,q (SC)

)
.

The converter CCPA has three outside sub-interfaces (labeled A, B, and E)
and behaves as follows: Upon input the i-th message mi at the A-sub-inter-
face, CCPA queries enc(mi) at the inside interface, obtaining a ciphertext ci
which it outputs at the outside E-sub-interface. Upon input the i-th trigger
input at the outside E-sub-interface and once i messages have been input at
the A-sub-interface, CCPA outputs mi at the outside B-sub-interface.

Since

encAdecB
(K•= =•, 〈•− →〉[q]

)
≡ CCPAG

IND-CPA
0,q (SC)

and
σCPA

E 〈•− →•〉[q] ≡ CCPAG
IND-CPA
1,q (SC),

the statement follows by Lemma 2.6.

As a direct corollary, we obtain that the same protocol constructs the
multi-message secure channel •−�• from the corresponding authenticated
channel •−� and a secret key, the statement holds with respect to a simula-
tor σ′CPA that behaves almost as σCPA but can be restricted to the case where the
messages are delivered in the correct order. The same statement holds with
respect to the unordered versions •−�� and •−��•, again with a slightly
modified simulator σ′′CPA.

Corollary 4.8. Let SC = (enc,dec) be an encryption scheme and sc be the pair
of converters described above. For the simulator σ′CPA,(K•= =•, •−�

)
p
sc,σ′CPA,(0,ε)

=======⇒ •−�•,

where the symbols refer to sequences
q msgs

•−� and
q msgs

•−�•, and

εq =
(
GIND-CPA

0,q (SC)
∣∣ GIND-CPA

1,q (SC)
)
◦ (·C′CPA)

for a reduction C′CPA similar to the one in Theorem 4.7. Analogously, for the
simulator σ′′CPA, (K•= =•, •−��

)
p
sc,σ′′CPA,(0,ε)′

========⇒ •−��•,

134 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

where the symbols refer to sequences
q msgs

•−�� and
q msgs

•−��•, and

ε′q =
(
GIND-CPA

0,q (SC)
∣∣ GIND-CPA

1,q (SC)
)
◦ (·C′′CPA)

for a reduction C′′CPA similar to the one in Theorem 4.7.

The condition of achieving IND-CPA is not only sufficient but also neces-
sary for the construction to be valid. If the protocol sc = (enc, dec) achieves
the construction shown in Theorem 4.7 with respect to the simulator σCPA de-
scribed there, then the underlying symmetric encryption scheme SC satisfies
the IND-CPA property.

Theorem 4.9. Let SC = (enc,dec) be an encryption scheme and sc be the pair
of converters described above. Let ε2 be a performance measure such that with
ε := (0, ε2): (K•= =•, 〈•− →〉

)
p sc,σCPA,ε
=====⇒ 〈•− →•〉 ,

where the symbols refer to sequences 〈•− →〉[q] and 〈•− →〉[q] (and σCPA is as
described above). Then the scheme SC is correct and

q
GIND-CPA
q (SC)

y
≤ ε2 ◦ (·C−1

CPA) (4.1)

for a reduction system C−1
CPA described in the proof.

Proof. The correctness follows from the fact that

encAdecB
(K•= =•, 〈•− →〉[1]

)
≡ 〈•− →•⊥〉[1]

and from the definition of sc, where a plaintext is encrypted and the resulting
ciphertext is decrypted with respect to the same key, as in the correctness
condition.

To show equation (4.1), we exhibit a reduction system C−1
CPA that behaves

as follows.5 Upon a query enc(m) at the outside interface, output m at the
inside A-sub-interface, and upon obtaining c as an input at the inside E-sub-
interface, respond with c. Since

GIND-CPA
0,q (SC) ≡ C−1

CPA

(
encAdecB

(K•= =•, 〈•− →〉[q]
))

and
GIND-CPA

1,q (SC) ≡ C−1
CPA

(
σCPA

E 〈•− →•〉[q]
)
,

the statement follows by Lemma 2.6.
5The reduction system has to be described in the opposite direction compared to Defini-

tion 3.24.

4.4. SYMMETRIC ENCRYPTION 135

Indistinguishability of Ciphertexts under Chosen-Ciphertext Attack—IND-
CCA

The IND-CCA game is supposed to capture a confidentiality guarantee in a
setting where the ciphertexts are not transmitted authentically, but over an
insecure connection. In the game, the adversary is, in addition to one type
of oracle of the IND-CPA game, given access to a decryption oracle where
it can query ciphertexts that are different from those he obtained from the
encryption oracle.6 A scheme which satisfies the IND-CCA property can be
used to construct a non-malleable confidential channel from a shared secret
key and an insecure channel; hence, it achieves the construction

(•= =•,−�)
sc−−→ −��•.

The construction is shown relative to the simulator σCCA, which initially
samples a key k←$K. Upon receiving the i-th message length ni ∈ N at
the inside interface, the simulator samples a string mi←$ {0, 1}ni , encrypts it
as ci←$ enc (k,mi), and outputs ci at the outside interface. Upon receiving a
ciphertext c′ at the outside interface, if c′ = ci for some i ∈ N, then output i
at the inside interface. Otherwise, σCCA decrypts c′ as m′ ← dec (k, c′) and
outputs m′ at the inside interface.

The above described simulator is not a monotone system in the sense of
Definition 3.18. This is intrinsic to the (required) behavior of the simula-
tor: upon receiving a ciphertext c′ at the outside interface, it has to either
decrypt c′ and inject the obtained plaintext into the channel, or (if the ci-
phertext had been output before) provide as input the index of the message
to which it corresponds. This behavior cannot be described as a monotone
function. The statement in Theorem 4.10 is still sound if one extends the
composition operation on monotone discrete systems to general discrete sys-
tems. Theorem 3.13, however, does not apply because a system algebra based
on this general type of system is not connection-order invariant. This can be
resolved by considering sets of discrete systems and using techniques such as
those described by Brock [Bro83], as sketched in Chapter 6, but is not in the
scope of this thesis.

Theorem 4.10. Let SC = (enc,dec) be an encryption scheme and sc be the pair
of converters described above. For the simulator σCCA,(K•= =•,−�

)
p sc,σCCA,(0,ε)
=======⇒ −��•,

6The reason for the latter restriction is that if the adversary were allowed to decrypt the
challenge, winning the game would become trivial.

136 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

where the symbols refer to sequences
q msgs

−� and
q msgs

−��•, and

εq =
q(

GIND-CCA
0,q (SC)

∣∣ GIND-CCA
1,q (SC)

)y
◦ (·CCCA)

for a reduction converter CCCA described in the proof.

Proof. The availability condition means that for each q ∈ N, the equation

encAdecB
(K•= =•,

q msgs

−�⊥
)
≡

q msgs

−��•⊥

holds. This follows directly from the correctness of the encryption scheme ac-
cording to Definition 2.18 and the fact that both systems stop after receiving q
inputs at the A-interface.

For the security condition, we describe a converter CCCA such that

(
encAdecB

(K•= =•,
q msgs

−�
) ∣∣∣ σCCA

E
q msgs

−��•
)

≡
(
CCCAG

IND-CCA
0,q (SC)

∣∣ CCCAG
IND-CCA
1,q (SC)

)
.

This converter CCCA has three outside sub-interfaces (labeled A, B, and E)
and behaves as follows: Upon input the i-th message mi at the A-sub-inter-
face, CCCA queries enc(mi) at the inside interface, obtaining a ciphertext ci
which it outputs at the outside E-sub-interface. Upon input the i-th cipher-
text c′i at the E-sub-interface, if c′i = cj for some j ∈ N, then CCCA outputs mj

at the outside B-sub-interface. Otherwise, CCCA queries dec(c′i) at the inside
interface, obtaining m′i which it outputs at the outside B-sub-interface.

Since

encAdecB
(K•= =•,

q msgs

−�
)
≡ CCCAG

IND-CCA
0,q (SC)

and

σCCA
E

q msgs

−��• ≡ CCCAG
IND-CCA
1,q (SC),

the statement follows by Lemma 2.6.

Indeed, IND-CCA is “almost” equivalent to the construction described in
Theorem 4.10; this is shown by Maurer et al. [MRT12]. While IND-CCA is
considered the standard notion for confidentiality in settings where the ad-
versary can modify ciphertexts, the exact formalized guarantees appear un-
natural. This is explained further in the following paragraphs.

4.4. SYMMETRIC ENCRYPTION 137

Artificial strictness. Several authors have noted that IND-CCA is artificially
strict in the sense that the decryption oracle will decrypt any ciphertext except
for the exact challenge ciphertext [ADR02, CKN03, Kra01, Kro99, Sho01].
Schemes that allow for “obvious” ciphertext modifications are not IND-CCA
secure, the typical separating example being an (otherwise IND-CCA secure)
encryption scheme where the encryption always appends a single bit to the
ciphertext, and this bit is ignored during decryption. While this modification
does not hurt the security guarantees in any meaningful way, the resulting
scheme is not IND-CCA secure.

Canetti et al. [CKN03] analyze several variants of “replayable” CCA secu-
rity.7 In the games they describe, not only the exact challenge ciphertext is
disallowed in decryption queries, but also “related” ciphertexts. Intuitively,
this means that encryption schemes may allow certain modifications to ci-
phertexts that do not change the result of the decryption. In more detail, the
notions considered by Canetti et al. [CKN03] are:

• IND-RCCA, or “replayable CCA”: any ciphertext that decrypts to one of
the plaintexts issued to the encryption oracle is disallowed;

• IND-sd-RCCA, or “secretly detectable RCCA”: intuitively, the receiver can
detect whether an adversarially generated ciphertext was generated as
a “modification” of an honestly generated one, or whether it is “inde-
pendent” of all honestly generated ones, these “modified” ciphertexts
are disallowed;

• IND-pd-RCCA, or “publicly detectable RCCA”: the above distinction can
be done publicly, i.e., without knowledge of the secret key.

The exact formalization is technically involved; for details, we refer to the
work of Canetti et al. [CKN03]. As discussed by Maurer et al. [MRT12],
the constructive definition of encryption is closely related to IND-sd-RCCA,
because the simulator (who knows the secret key) needs to identify the ci-
phertexts that relate to ciphertexts simulated before.

Unnatural Malleability. IND-CCA is not a natural security requirement for
symmetric encryption: The adversary may generate valid ciphertexts for ar-
bitrary plaintexts (but only independently of honestly sent messages). Most
existing symmetric encryption schemes are either malleable (such as the one-
time pad or CBC) or, if they are non-malleable, they already construct the

7Their original notions regard public-key schemes, but the extensions to symmetric schemes
are also described.

138 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

fully secure channel (such as authenticated encryption). Here, it becomes ap-
parent that IND-CCA has evolved as a notion for public-key schemes, where
the adversary knows the encryption key and can encrypt arbitrary messages.

Integrity of Ciphertexts—INT-CTXT

Integrity of ciphertexts has first been introduced by Bellare and Namprem-
pre [BN00] and formalizes that the adversary cannot produce any fresh valid
ciphertext. In more detail, an encryption scheme is said to achieve INT-CTXT
security if no adversary with access to an encryption oracle can generate a
valid ciphertext that is different from all ciphertexts obtained from the oracle.
Here, “valid” means that the decryption outputs a message (not an error sym-
bol). Note that existential unforgeability [KY00b] and ciphertext unforgeabil-
ity [Kra01] are similar: The differences are, for example, that the definition
of Bellare and Namprempre[BN08] allows multiple queries to the challenge
oracle, whereas the one of Katz and Yung [KY00b] allows only one.

A symmetric encryption scheme that satisfies both IND-CPA and INT-CTXT
gives rise to a protocol that constructs a fully secure channel from an insecure
channel, which can be written as

(•= =•,−�)
sc−−→ •−��•.

Yet, INT-CTXT, similarly to IND-CCA, is artificially strict concerning modifica-
tions of ciphertexts and hence the converse statement does not hold.

We prove the construction statement relative to the following simula-
tor σCTXT. The simulator initially samples a key k←$K. Upon receiving
the i-th message length ni ∈ N at the inside interface, it samples a string
mi←$ {0, 1}ni , encrypts it as ci←$ enc (k,mi), and outputs ci at the outside
interface. Upon receiving a ciphertext c′ at the outside interface, if c′ = ci for
some i ∈ N, then output i at the inside interface. Note that this simulator, in
contrast to σCCA, is monotone.

Theorem 4.11. Let SC = (enc,dec) be an encryption scheme and sc be the pair
of converters described above. For the simulator σCTXT,(K•= =•,−�

)
p sc,σCTXT,(0,ε)
========⇒ •−��•,

where the symbols refer to sequences
q msgs

−� and
q msgs

•−��•, and

εq =
q(

GIND-CPA
0,q (SC)

∣∣ GIND-CPA
1,q (SC)

)y
◦ (·C′′CPA) +

q
GINT-CTXT
q (SC)

y
◦ (·CCTXT)

for reduction converters C′′CPA and CCTXT described in the proof.

4.4. SYMMETRIC ENCRYPTION 139

Proof. The availability condition means that for each q ∈ N, the equation

encAdecB
(K•= =•,

q msgs

−�⊥
)
≡

q msgs

•−��•⊥

holds. This follows directly from the correctness of the encryption scheme
according to Definition 2.18 and because both systems stop after receiving
exactly q inputs at the A-interface.

For the security condition, we bound the advantage in the distinction prob-
lem (Rq | Sq), with

Rq := encAdecB
(K•= =•,

q msgs

−�
)

and Sq := σCTXT
E

q msgs

•−��•.

We first describe a converter CCTXT that has three outside sub-interfaces (la-
beled A, B, and E) and behaves as follows: Upon input the i-th message mi

at the A-sub-interface, CCTXT queries enc(mi) at the inside interface, obtain-
ing a ciphertext ci which it outputs at the outside E-sub-interface. Upon input
ciphertext c′ at the E-sub-interface, if c′ = ci for some i ∈ N then CCTXT out-
puts mi at the outside B-sub-interface. Otherwise, CCTXT queries check(c′i) at
the inside interface (and does not provide output at the outside interface).

We define an MBO on the systems Rq that becomes 1 once an input at
the E-interface is a ciphertext that was not output at the E-interface before
but is valid according to the key in dec. The game equivalence

Rq

g
≡ CCTXTG

INT-CTXT
q (SC)

holds because each input at the A-interface results in an output at the E-
interface which is an encryption under a uniformly random key, and inputs
at the E-interface result in outputs at the B-interface if and only if one of
the previously obtained ciphertexts is input. Moreover, the MBO becomes 1
in both cases if a ciphertext is input at the E-interface that is valid but not
output at the E-interface before. Lemma 2.14 then implies that

q(
Rq | CCTXTG

INT-CTXT
q (SC)

)y
≤

q
GINT-CTXT
q (SC)

y
◦ (·CCTXT).

Our next step is to describe a reduction converter C′′CPA such that

C′′CPAG
IND-CPA
0,q (SC) ≡ CCTXTG

INT-CTXT
q (SC)

and
C′′CPAG

IND-CPA
1,q (SC) ≡ Sq.

140 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

This converter C′′CPA has three outside sub-interfaces (labeled A, B, and E)
and behaves as follows: Upon input the i-th message mi at the A-sub-inter-
face, C′′CPA queries enc(mi) at the inside interface, obtaining a ciphertext ci
which it outputs at the outside E-sub-interface. Upon input the i-th cipher-
text c′i at the E-sub-interface, if c′i = cj for some j then output mj at the B-
sub-interface. The equivalences

CCTXTG
INT-CTXT
q (SC) ≡ C′′CPAG

IND-CPA
0,q (SC)

and
σCTXT

E
q msgs

•−��• ≡ C′′CPAG
IND-CPA
1,q (SC),

hold by the definitions of the systems, so the statement follows by Lemma 2.6.
The triangle inequality for the performance in the distinction problem allows
us to conclude that
r(

encAdecB
(K•= =•,

q msgs

−�
) ∣∣∣ σCTXT

E
q msgs

•−��•
)z

≤
r(

encAdecB
(K•= =•,

q msgs

−�
) ∣∣∣ CCTXTG

INT-CTXT
q (SC)

)z
+
r(

CCTXTG
INT-CTXT
q (SC)

∣∣ σCTXT
E

q msgs

•−��•
)z

≤
q
GINT-CTXT
q (SC)

y
◦ (·CCTXT) +

q(
GIND-CPA

0,q (SC)
∣∣ GIND-CPA

1,q (SC)
)y
◦ (·C′′CPA),

which concludes the proof

4.5 Combining Encryption and Authentication

A secure channel can be constructed via the application of a MAC (for au-
thenticity) and an encryption scheme (for confidentiality). There are two a
priori equally valid generic ways for combining the MAC and the encryption
scheme. Either, one first uses a MAC to construct an authenticated channel
from an insecure channel and a shared secret key, and then uses an encryp-
tion scheme to construct a fully secure channel. This is usually referred to as
Encrypt-then-Authenticate due to the duality discussed in Section 1.2.1. Or,
one first uses an encryption scheme to construct a confidential but potentially
malleable channel from an insecure channel and a shared secret key, and then
uses a MAC to construct a fully secure channel. This is usually referred to as
Authenticate-then-Encrypt.

4.5.1 Encrypt-then-Authenticate

The statement about Encrypt-then-Authenticate follows as a simple corollary
of the statements proven in Sections 4.3 and 4.4. For the single-message case,

4.5. COMBINING ENCRYPTION AND AUTHENTICATION 141

we obtain as a direct corollary of Theorem 4.2 that

(•= =•,− →) p mac,σmac,εmac
========⇒ •− →,

with the simulator σmac and the performance measure εmac described in the
theorem. Also, as a corollary of Theorem 4.7, we obtain that

(•= =•, 〈•− →〉) p sc,σCPA,εCPA
======⇒ 〈•− →•〉 ,

with the simulator σCPA and the performance measure εCPA described in the
theorem.

Using the composition theorem (Theorem 3.13), we directly obtain

(•= =•, (•= =•,− →)) p
sc◦〈mac〉2,〈σmac〉2◦σCPA,ε

===============⇒ •− →•,

with ε = (0, εCPA ◦ (· 〈σmac〉2) + εmac ◦ (·sc)). The analogous statements hold
of course with respect to the one-time pad encryption and the CBC-mode
encryption described in Sections 4.4.1 and 4.4.2.

If both the MAC and the encryption apply to a multi-message case, the
same holds for the composite construction. Hence, as a corollary to Theo-
rems 4.2 and 4.3 and Corollary 4.8, we obtain

(•= =•, (•= =•,−�)) p
sc◦seq◦〈mac〉2,〈σmac〉2◦σseq◦σ′CPA,(0,ε)

=======================⇒ •−�•,

where the symbols are parametrized in q ∈ N as
q msgs

−� and
q msgs

•−�• and with εq =
εCPA,q ◦ (·σseq) ◦ (· 〈σmac〉2) + εmac,q ◦ (·seq) ◦ (·sc).

Similar soundness results for Encrypt-then-Authenticate have been shown
in different formal contexts (and often without an explicit notion of sequence
numbers), for instance by Bellare and Namprempre [BN08].

4.5.2 Authenticate-then-Encrypt

In contrast to Encrypt-then-Authenticate, Authenticate-then-Encrypt is not
generically secure. This can be seen by considering the following scheme,
which was described by Maurer and Tackmann [MT10] and is slightly mod-
ified from Krawczyk’s example [Kra01]: A message m ∈ {0, 1}` is encoded
bit-wisely to a message m′ ∈ {0, 1}2`, before m′ is encrypted with a one-time
pad to guarantee confidentiality. The encoding of bits, however, is asymmet-
ric: A 0-bit is encoded to 00, while a 1-bit is encoded to either 10, 01, or 11.
Hence, if the attacker flips two subsequent bits c2i, c2i+1 of the ciphertext,
the corresponding plaintext bit mi will always flip if mi = 0, but flips with
probability only 1

3 if mi = 1. As the verification of a strongly unforgeable

142 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

MAC will succeed if and only if the authenticated plaintext is unchanged, an
attacker can guess the bit mi with substantial probability by flipping c2i, c2i+1

and checking whether the verification succeeds. Hence, the verification of the
MAC leaks the bit at the corresponding position, which breaks confidentiality.

More abstractly, if the malleability allows the attacker to transform the ci-
phertext such that the probability of the plaintext to remain constant differs
substantially for two different values of the plaintext, then the attacker can
use the result of the MAC verification (valid or invalid) to detect which one
of the two plaintexts was sent. For particular encryption schemes which do
not exhibit the described weakness, the combination with a strongly unforge-
able MAC is indeed secure. The first formal such statement has been shown
by Krawczyk [Kra01]. Subsequently to our treatment [MT10], Paterson et
al. [PRS11] have provided a game-based analysis of the schemes used in TLS
which also applies to the variable-length padding applied there.

We show the soundness of Authenticate-then-Encrypt for the single-use
XOR-malleable channel −⊕→• here; a treatment which is specific to the exact
combinations of schemes used in TLS appears in Section 5.

Let mac = (tag, chk) be a pair of converters derived from a MAC scheme
MAC = (mac, check) with tag length τ ∈ N as described in Section 4.3. We
use the following simulator σ′mac: Upon input a message length n ∈ N at the
inside interface, output a uniformly random string c←$ {0, 1}n+t of length n+
τ at the outside interface. Upon input a ciphertext c′ at the outside interface,
if c = c′ then provide the trigger at the inside interface.

Theorem 4.12. Let (mac, check) be a MAC scheme and mac = (tag, chk) be the
protocol described above. For the simulator σ′mac,(K•= =•,−⊕→•

)
p
mac,σ′mac,(0,ε)

=========⇒ •− →•,

where the statement is parametrized in ` ∈ N for the resources
`+τ bits

−⊕→• and
` bits

•− →•,
and performance mappings ε := JGSUF-CMA

1 (MAC)K ◦ (·Cmac)
′, for a reduction

C′mac explicitly described in the proof.

Proof. For the availability condition, we show

tagAchkB
(
•= =•⊥,

`+τ bits

−⊕→•⊥
)

≡
` bits

•− →•⊥.

This follows directly from the correctness of the MAC scheme: for the key k ∈
K output by •= =• and all messages m ∈ M, check(k,m,mac(k,m)) = true
and hence chk accepts the tag generated by tag. In both cases, the system
provides output unless a message of length greater than ` messages have
been input.

4.5. COMBINING ENCRYPTION AND AUTHENTICATION 143

For the security condition, we define

R` := tagAchkB
(
•= =•,

`+τ bits

−⊕→•
)

and S` := σ′mac
E ` bits

•− →•

and a reduction C′mac which we describe as follows. At the left interface,
C′mac provides three sub-interfaces, while at the right interface it connects
to GSUF-CMA

1 (MAC). On input a message m ∈ M at the A-sub-interface, query
it at the right interface to obtain a tag t ∈ {0, 1}τ and output a uniformly
random string c of length |m|+ τ at the E-sub-interface. On input a string c′

at the E-sub-interface, continue as follows:

• If |c| ≥ |c′| ≥ τ , then compute m′ = (m.t)⊕ c⊕ c′ (the first |c′| bits).

• If |c| < |c′|, then sample s←$ {0, 1}|c
′|−|c| and compute m′ = ((m.t) ⊕

c⊕ c′).s.

Let m′′.t′ ← m′ (i.e., the first |m′|−τ bits are assigned to m′′, the remaining τ
bits to t′). Query vrf (m′′, t′) at the right interface, if the game returns true,
then output m at the B-sub-interface.

We then define an MBO on the systems Rq and Sq that becomes 1 if a
message c′ 6= c is input at the E-interface but the MAC verification succeeds
(within chk or σ′mac, respectively); it is easy to see that

R̂q

g
≡ Ŝq

g
≡ C′macG

SUF-CMA
1 (MAC).

By Lemma 2.14, we obtain that

J(Rq | Sq)K ≤ JC′macG
SUF-CMA
1 (MAC)K = JGSUF-CMA

1 (MAC)K ◦ (·C′mac),

and Lemma 2.6 gives us the desired result.

4.5.3 Discussion

As discussed in the previous sections, both Encrypt-then-Authenticate and
Authenticate-then-Encrypt can in principle be used to construct a fully se-
cure channel from an insecure channel and two shared secret keys. The proof
of Encrypt-then-Authenticate is generic in the sense that all MAC schemes are
shown to construct an authenticated channel of the same type and the proof
of the encryption schemes can assume this channel, moreover, the security
definitions for the schemes correspond to the widely used notions WUF-CMA
(for the MAC schemes) and IND-CPA (for the encryption schemes).

By contrast, the proof of Authenticate-then-Encrypt is not as generic. Each
encryption scheme achieves a different type of malleability in the constructed

144 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

confidential channel, and the MAC has to be shown to be sufficient for each
particular type of malleability. While one can characterize classes of mal-
leability that are indeed sufficient (this approach is pursued in a previous pa-
per [MT10]) and hence reduce the number of required proofs, this approach
is still more fragile because, for instance, the particular encoding used for the
pair of message and tag is important for the scheme to be secure (see the
example in Section 4.5.2).

A third approach is to not use generic composition and directly show that
a combined scheme achieves the construction in a single step. This approach,
usually called authenticated encryption, is sufficient if one uses the (widely
used) combination of proving the scheme to achieve both IND-CPA and INT-
CTXT (this is shown in Theorem 4.11). The Encrypt-and-Authenticate (E&A)
combination of a symmetric encryption scheme and a MAC, where the MAC is
also computed on the plaintext, but the generated tag is not encrypted, cannot
be described as a composition of two generic construction steps. It is an
authenticated encryption under assumptions that are stronger than those for,
e.g., EtA. Additionally, several monolithic authenticated encryption schemes
that perform the complete transformation in a single step are described in the
literature (e.g., [RBB03, WHF02]).

4.6 Receiver-Anonymous Communication

The main goal of this section is to model and achieve confidential and recei-
ver-anonymous communication. We first formalize a useful anonymity guar-
antee in the resource −−?��•�• in Section 4.6.1. We then discuss in Section 4.6.2
in which way this resource can be constructed by vanilla public-key encryption
from a “broadcast” channel and several authenticated channels (to transmit
the public keys). Finally, in Section 4.6.3 we show how to achieve this con-
struction more efficiently, by means of a public-key encryption scheme with
the properties IND-CCA, IK-CCA [BBDP01], and WROB-CCA [ABN10].

4.6.1 Resources for Receiver-Anonymous Communication

An n-receiver channel is a resource with an interface labeled A for the sender,
n interfaces labeled B1, . . . , Bn for the receivers, and a third type of interface
labeled E that captures potential adversarial access. The security properties
of different n-receiver channels are described in the following; the symbolic
notation for the channels extends the one from Section 4.1.

4.6. RECEIVER-ANONYMOUS COMMUNICATION 145

Insecure broadcast communication. We base our constructions on a re-
source − / , which allows the sender to broadcast a given message to all
receivers B1, . . . , Bn. Such a channel can be implemented, for example, by
multi-sending the same message individually to each receiver over an insecure
network; the channel models also what is achieved by wireless broadcast. The
resource − / leaks the complete message at the E-interface, and allows to
delete, change, or inject messages destined for particular receivers via the E-
interface. The behavior for the case where no attacker is present is described
in System 26.

System 26 The insecure broadcast channel − / ⊥
1: once ∀j ≤ i : A.j? 6= �
2: for k ∈ [n] do
3: Bk.i!← A.i?
4: end for
5: end.

If an attacker is present, the resource allows to control the entire com-
munication via the E-interface. On input a message m at the A-interface,
this message is leaked at the E-interface. The E-interface allows a potential
attacker to target messages to the individual recipients, such as message m
to receiver i or message m̃ to receiver i′. This is formally described as Sys-
tem 27 and depicted in Figure 4.6. At the E-interface, the channel has output
sub-interfaces E.1!, E.2!, . . . which leak the messages input at the A-interface.
The channel has, for each k ∈ [n], input sub-interfaces E.k.1?, E.k.2?, . . . , and
a message input at E.k.i? is output to the k-th receiver at Bk.i!.

System 27 The insecure broadcast channel − /
1: once ∀j ≤ i : A.j? 6= �
2: E.i!← A.i?
3: end.

4: once ∀j ≤ i : E.k.j? 6= �
5: Bk.i!← E.k.i?
6: end.

Confidential receiver-anonymous communication. The confidential re-
ceiver-anonymous channel −−?��•�• leaks neither the message contents nor the
intended recipient to the adversary, just the message length. It allows, how-
ever, to “conditionally” deliver a message to a chosen user if and only if this

146 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

− /A

B1

Bk

Bk′

Bn

E

...

...

...

A.i?

E.i! E.k.i?

Bk.i!

E.k′.i?
B
k′ .i!

m

m m

m

m̃

m̃

Figure 4.6: The insecure broadcast channel.

chosen user was the originally intended recipient. The behavior for the case
where no attacker is present is described as System 28

System 28 The receiver-anonymous confidential channel −−?��•�•⊥
1: cnt1, . . . , cntn ← 1

2: once ∀j ≤ i : A.j? 6= �
3: (k,m)← A.i?
4: Bk.cntk!← m
5: cntk ← cntk + 1
6: end.

The behavior for the case where an attacker is present, including the ca-
pability to conditionally deliver messages, is described as System 29. The
E-interface has sub-interfaces which are labeled by pairs (l, i) ∈ [n] × N—
providing input at sub-interface E.l.i? corresponds to injecting or delivering
the i-th message to receiver Bl. The resource is also depicted in Figure 4.7.
In the application of a public-key cryptosystem to a broadcast network such
as − / , the capabilities at the E-interface correspond to trial deliveries of
intercepted messages and to adversarial encryptions.

Authenticated channels. Each receiver uses one authenticated channel to
send its public key to the sender. We model the composition of n such chan-
nels as a combined resource which has n sub-interfaces at both the A and
the E interface and one interface for each Bi, i ∈ [n]. The channel can be
seen as n copies of the channel← −• as described in Section 4.1.3, where for
each i ∈ [n] there is one channel from interface Bi to sub-interface A.i and
with adversarial sub-interface E.i. We denote this resource as

∏
(I,J)∈P← −•

4.6. RECEIVER-ANONYMOUS COMMUNICATION 147

System 29 The receiver-anonymous confidential channel −−?��•�•IC
with cor-

ruption set IC

1: cnt1, . . . , cntn ← 1

2: once ∀j ≤ i : A.j? 6= �
3: (k,m)← A.i?
4: if k ∈ IC then
5: E.i!← m . Receiver corrupt: attacker learns the message.
6: else
7: E.i!← |m| . Receiver honest: attacker learns the message length.
8: end if
9: end.

10: once ∀j ≤ i : E.l.j? 6= �
11: if E.l.j? = i ∈ N then . Deliver a message to Bl.
12: (k,m)← A.i?
13: if k = l then . Is Bl intended recipient?
14: Bl.cntl!← m
15: cntl ← cntl + 1
16: end if
17: else . Inject a message to Bl.
18: Bl.cntl!← E.l.j?
19: cntl ← cntl + 1
20: end if
21: end.

148 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

−−?��•�•A

B1

Bk

Bk′

Bk′′

BnE

...

...

...

...

A.i?

E.i!

E.k.j! E.k′.j!

E.k′′.j!

Bk.j!

B
k′′ .j!

(mi, ki)

|mi| ı̄

mı̄

|

ı̄ m̃

m̃

Figure 4.7: The confidential receiver-anonymous channel.

with the set P := {(A.i, Bi) : i ∈ [n]} indicating the (sub-)interface names.
This is to be understood as the parallel composition of one resource ← −•
per i ∈ [n], where the A-interfaces of the channel ← −• (which has inter-
faces A, B, and E) is relabeled as A.i-sub-interface and the B-interfaces are
relabeled as Bi-interface. For brevity, we will also use the notation← −•n.

4.6.2 Generic Construction using Public-Key Encryption

The application of public-key encryption in a setting with only one sender
and one receiver can be described as deploying converters8 pkenc1 (associ-
ated with the sender) and pkdec1 (associated with the receiver) as explained
by Coretti et al. [CMT13a]. The receiver (within pkdec1) initially uses the
key-generation function PKEgen to obtain a key pair (sk , pk), stores the pri-
vate key sk locally, and sends the public key pk via an authenticated channel
(denoted ← −•, the first assumed resource). Upon receiving a ciphertext c̃ at
the inside interface (via an insecure communication channel − →, the second
assumed resource), pkdec1 computes m̃ ← PKEdec(sk , c̃) and outputs m̃ if
m̃ 6= �. The encryption converter pkenc1 initially obtains the public key pk
(via← −•) and, for each message m obtained at the outside interface, pkenc1

computes c←$ PKEenc(pk ,m) and sends c over the insecure channel − →.
As pointed out already by Maurer and Schmid [MS96] and formally proved
by Coretti et al. [CMT13a], this constructs a confidential channel − →•.

The receiver-anonymous channel −−?��•�• can be constructed from − / and
one channel ← −• per receiver using any secure public-key scheme: Each re-
ceiver generates a key pair and sends the public key through its authenti-

8We deviate from the notation of Coretti et al. [CMT13a] to differentiate between converters
corresponding to symmetric encryption and converters corresponding to public-key encryption.
The notation we use here is adapted from the one used by Kohlweiss et al. [KMO+13].

4.6. RECEIVER-ANONYMOUS COMMUNICATION 149

cated channel ← −• to the sender; the sender transmits a message to a spe-
cific receiver by concatenating (in a fixed predetermined order): an encryp-
tion of this message under the intended receiver’s public key and a “garbage”
message encrypted with the appropriate key for each additional potential re-
ceiver; this composite message is then sent via the broadcast channel. Each re-
ceiver decrypts only “its” part of the composite ciphertext and checks whether
or not the message was “garbage.” (A simple way to implement the above
“garbage” message is to set it to a public constant message m̄ ∈ M which is
used only for that purpose.) If the broadcast channel is achieved by multi-
sending the same message to each receiver, then one can also send only the
corresponding part to each receiver.

Yet, this approach has two main disadvantages. First, the computation
and communication complexity is linear in the (potentially large) number
of possible receivers. Second, the sender must know the public keys of all
potential receivers, not just of the one intended receiver.

4.6.3 Achieving Confidential Receiver-Anonymous Commu-
nication

In this section, we consider PKE schemes deployed in a setting with one
sender A and n receivers B1, . . . , Bn. A protocol is formally a tuple with one
converter pkenc for A and one converter pkdec for each Bi with i ∈ [n]. Each
converter pkdec is defined similarly to pkdec1 in Section 4.6.2. The encryption
converter pkenc connects at its inside interface to two resources. By using the
n sub-interfaces of the first resource (each sub-interface corresponds to one
authenticated channel for each receiver Bi), pkenc expects to obtain public
keys pk1, . . . , pkn. Upon receiving (m, i) ∈ M× [n] at the outside interface,
pkenc computes c←$ PKEenc(pk i,m) and sends c via the second resource
(instantiated by an insecure broadcast network − /) at the inside interface.

A public-key encryption scheme constructs the resource −−?��•�• from a
broadcast channel if it has the properties IND-CCA, IK-CCA, and WROB-CCA.
The property WROB-CCA (weak robustness) captures the guarantee that ci-
phertexts honestly generated for one user will not be successfully decrypted
by another user. We show that weak robustness is sufficient for our construc-
tion; in view of the results of Abdalla et al. [ABN10], this may be surprising,
since the adversary can inject arbitrary ciphertexts into the channel − / . The
intuitive reason why WROB-CCA is sufficient is two-fold: First, preventing the
adversary from generating a single “fresh” ciphertext that is accepted by two
receivers is only helpful if, for some reason, injecting two different cipher-
texts is impossible, or more difficult for the adversary than injecting a single
one. Second, the non-malleability guarantees of IND-CCA exclude that the

150 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

adversary can “maul” honestly generated ciphertexts such that unintended
receivers decrypt “related” plaintexts (this is used in the reduction to IND-
CCA in the proof of Theorem 4.13).

In a setting with multiple receivers it becomes relevant to capture the guar-
antees that are provided in case one or more of the receivers are corrupted.
We only consider static corruptions here which can be captured by consid-
ering, for each subset IC ⊆ [n], a specific construction statement in which,
intuitively, the capabilities of the interfaces Bi for i ∈ IC are also provided at
the E-interface, as discussed in Section 3.3.3.

← −•

← −•

− /

pkenc

pkdec

pkdecA

E

B1

B2

(a) Using public-key encryption over an
(insecure) broadcast.

−−?��•�•

σ
A

E

B1

B2

(b) Communication via the anony-
mous confidential network.

Figure 4.8: The security statement in a setting with two receivers.

The security statement we prove below is depicted in Figure 4.8, where
we show how the scheme is used together with the assumed resources: Each
sender transmits its public key authentically to the sender, who then uses the
broadcast channel to transmit the ciphertext to both receivers. Figure 4.8b
shows the idealized setting, where the message is transmitted via the resource
−−?��•�• (which guarantees confidentiality). The value “∗” is determined by the
simulator and depends on the values c̃1 and c̃2 given by the adversary; the
symbol may stand for a query to deliver the message m or to inject unrelated
messages.

Theorem 4.13 shows that if the public-key encryption scheme has the
three assumed properties, then the two settings in Figure 4.8 are indistin-
guishable. The intuitive interpretation of this statement is that whenever such
a scheme is used to protect messages transmitted via a broadcast channel such
as− / , one obtains the guarantees explicitly described by the “idealized” net-
work resource−−?��•�•. The proof of the theorem shows that every distinguisher
for the two settings can be transformed into an adversary against (at least)
one of the three properties IND-CCA, IK-CCA, and WROB-CCA with loss qn
for q messages and n receivers.

We first describe, for each case IC ⊆ [n], the simulator σIC
as follows. It

4.6. RECEIVER-ANONYMOUS COMMUNICATION 151

keeps internally (analogously to the channels) counters cnt1, . . . , cntn ∈ N
which are initialized to 1.

• Generate n − |IC| private-/public-key pairs (pk i, sk i) with i ∈ [n] \ IC.
Output each pk i at the outside sub-interface corresponding to the re-
spective receiver at ← −•n. Furthermore, generate one auxiliary key
pair (p̃k , s̃k). For all j ∈ IC, obtain a public key p̄k i at the corresponding
outside sub-interface of← −•.

• Upon the k-th message length `k from −−?��•�•, compute a ciphertext
ck←$ PKEenc(p̃k , 0`k) and output ck at the first outside sub-interface
(corresponding to − /). Upon receiving a pair (mk, ik) at the inside
interface (which means ik ∈ IC), encrypt mi using p̄k ik and output that
ciphertext at the first outside sub-interface.

• Upon input a message c̃ to some user j ∈ [n] \ IC at the outside sub-
interface corresponding to − / :

– In case c̃ = ck̄ for some k̄ ∈ N, output k̄ at the inside inter-
face In.j.cntj? and set cntj ← cntj + 1.

– In case c̃ is “fresh,” compute m̃j ← PKEdec(sk j , c̃), and, if m̃j 6= �,
output m̃j at the inside interface In.j.cntj? and set cntj ← cntj +1.

The simulator described here is not monotone for the same reason as the
simulator σCCA in Section 4.4.3. Analogously, the statement of Theorem 4.13
is still sound, but the composition theorem stated as Theorem 3.13 does not
immediately apply. We remark, however, that the simulator (as σCCA) is of
a type for which modularity can be proven using techniques such as those
described by Brock [Bro83].

Theorem 4.13. Let PKE = (PKEgen,PKEenc,PKEdec) be a public-key en-
cryption scheme and pke = (pkenc, pkdec, . . . pkdec) be the protocol as described
above. Then pke constructs −−?��•�• from − / and

∏
(I,J)∈P← −• with respect to

static corruptions. More formally, for each IC ⊆ [n],(
− / IC

,← −•nIC

)
p
pke,σIC ,ε======⇒ −−?��•�• IC

,

where the symbols correspond to the families ← −•nIC
,

q msgs

− / IC
and

q msgs

−−?��•�• IC
with

parameters q, n ∈ N and IC ⊆ I, and

ε1
q :=

q
GWROB-CCA
n,q (PKE)

y
◦ (·C),

respectively

ε2
q := qn ·

q(
GPKE-CCA
q,0 (PKE)

∣∣ GPKE-CCA
q,1 (PKE)

)y
◦ (·C′)

152 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

+ qn ·
q(

GIK-CCA
0,q (PKE)

∣∣ GIK-CCA
1,q (PKE)

)y
◦ (·C′′)

+ q ·
q
GWROB-CCA
n,q (PKE)

y
◦ (·C′′′),

for four reductions C, C′, C′′, and C′′′ described in the proof.

Proof. The availability condition means that for all n, q ∈ N, the statement

s(
pkencApkdecB1 · · · pkdecBn

(
q msgs

− / ⊥,← −•n⊥
) ∣∣∣ q msgs

−−?��•�•⊥

){
≤ q

q
GWROB-CCA
n,q (PKE)

y
◦ (·C)

holds, for a reduction C described as follows. Initially, C calls genuser(i)
for i ∈ [n] at the inside interface to obtain the public keys pk1, . . . , pkn.
Then, upon each input (k,m) at the A-sub-interface of the outside interface,
C calls enc (m, k) at the inside interface and outputs m at the outside Bk
sub-interface. We then use an MBO on

R⊥ := pkencApkdecB1 · · · pkdecBn
(
q msgs

− / ⊥,← −•n⊥
)

that becomes 1 as soon as an input (k,m) at the A-interface leads to an out-
put at some interface Bk′ for k′ 6= k. If the encryption scheme has perfect
correctness (if the scheme is not perfectly correct, we alter the MBO to take
this into account), then we obtain

R̂⊥
g
≡ Ŝ⊥

g
≡ CGWROB-CCA

n,q (PKE),

(where S⊥ :=
q msgs

−−?��•�•⊥) and hence by Lemma 2.14,

s(
pkencApkdecB1 · · · pkdecBn

(
q msgs

− / ⊥,← −•n⊥
) ∣∣∣ q msgs

−−?��•�•⊥

){
≤

q
GWROB-CCA
n,q (PKE)

y
◦ (·C).

Security. We now proceed to proving the security condition. Before we
sketch the reductions from winning the underlying games, we remark that
the simulation for corrupted receivers is always perfect (the ciphertext is com-
puted exactly as in the honest encryption, and the injected ciphertexts are
simply forwarded) and can hence be ignored in the following arguments. We
use the notation

Rq := pkencApkdecB1 · · · pkdecBn
(
q msgs

− / ,← −•n
)

and Sq :=
q msgs

−−?��•�•.

4.6. RECEIVER-ANONYMOUS COMMUNICATION 153

WROB-CCA. As a first intermediate step, we introduce a hybrid resource
H1. This resource behaves like −−?��•�•, except that it allows for the delivery
of an arbitrary message to a party other than the intended recipient: namely,
instead of the input E.l.j?← k̄, H1 allows to deliver a message m̃ to a user Bj
for j 6= ik̄ (stillmk̄ for j = ik̄) by means ofE.l.j?←

(
k̄, m̃

)
. We use a modified

simulator σ1 that sends the decryption of the ciphertext simulated for message
k̄ under the key of user j. The systems σ1

EH1 and Sq are equivalent unless,
for some query, there is a user Bj , not the intended recipient of some cipher-
text, that outputs a message upon receiving the ciphertext. If this situation
occurs (i.e., some unintended recipient outputs a message from a ciphertext)
it directly corresponds to winning the WROB-CCA game. In more detail, the
reduction C′′′ obtains n generated keys at the inside interface (analogously
to C above), which correspond to the users, and an additional key, used to
simulate ciphertexts. It encrypts the plaintexts using the enc-oracle of the
game.

IND-CCA. We introduce a second hybrid H2 that behaves as H1 but addi-
tionally leaks the receiver’s identity (no anonymity). The suitable simulator
σ2 always encrypts the all-zero string of appropriate length for the respective
user, and decrypts as needed. Two things must be shown: first, that σ2

EH2 is
indistinguishable from Rq; and second, that σ1

EH1 and σ2
EH2 are indistin-

guishable. We start with the former one. This is shown via a reduction C′ that
connects with the inside interface to the game GPKE-CCA(PKE). The reduction
chooses a “target” receiver k̄←$ [n] and a “target” message ı̄←$ [q] uniformly
at random, and encrypts all messages to receivers with k < k̄ as well as the
messages i < ı̄ for receiver k̄ as encryptions of the all-zero string (of the same
length as the message), and all messages to receivers with k > k̄ as well as
the messages i > ı̄ for receiver k̄ using the correct message and public key.
The ı̄-th message to receiver k̄ is encrypted using the challenge oracle, using
the all-zero string as m0 and the actual message as m1. This can be seen as a
hybrid argument as follows: Let C′

k̄,̄ı
the reduction with fixed values k̄ ∈ [n]

and ı̄ ∈ [q], then

C′k̄,̄ıG
PKE-CCA
q,0 (PKE) ≡ C′k̄,̄ı+1G

PKE-CCA
q,1 (PKE) for ı̄ < q and all k ∈ [n],

and

C′k̄,qG
PKE-CCA
q,0 (PKE) ≡ C′k̄+1,1G

PKE-CCA
q,1 (PKE) for all k ∈ [n− 1].

Also,

σ2
EH2 ≡ C′n,qG

PKE-CCA
q,0 (PKE) and Rq ≡ C′1,1G

PKE-CCA
q,1 (PKE).

154 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

Consequently, by choosing the values k̄ ∈ [n] and ı̄ ∈ [q] uniformly at random,
the reduction loses a factor of nq.

IK-CCA. The last step is to show a reduction C′′ that turns a distinguisher
between σ1

EH1 and σ2
EH2 corresponding, respectively, to the first and sec-

ond hybrid introduced in the proof, into an IK-CCA-adversary. Recall that H2

behaves just like H1 except that it does not grant anonymity. We again use a
hybrid argument with nq “intermediate” systems between σ1

EH1 and σ2
EH2,

similarly to the IND-CCA case, such that each intermediate system embeds
the challenge at a different position (as above). All other keys, encryptions,
or decryptions are either simulated as “real” or as “ideal,” depending on their
position. The system where all the queries are “real” is equivalent to σ2

EH2,
and the system where only p̃k was used (all queries are “ideal”) is equivalent
to σ1

EH1. As in the case of IND-CCA, the reduction loses a factor of nq.

4.7 Unilateral Key Establishment

Many practical security protocols used on the Internet are designed for a
client-server setting where only the server has a certified public key. The most
prominent example for this use case is access to web servers, but protocols for
sending or receiving mail or for accessing database or directory servers often
follow the same approach. In these settings, the client and the server establish
a cryptographic key which has only unilateral authentication, i.e., the client is
assured to share a key with the assumed server; the server has no comparable
guarantee. The client is later authenticated by sending its credentials, often a
username and a password, over a connection that is secured with the shared
key.

In this section, we show that the unilateral key is constructed from an au-
thenticated communication channel in one direction (say, from B to A) and
an insecure communication channel in the opposite direction by a simple pro-
tocol based on a CPA-secure key-encapsulation mechanism (KEM). Indeed,
the unilateral key formalizes the expected guarantee: In a setting where only
one party, say B, can send messages authentically, the attacker can always
block the messages sent by A and engage in the protocol with B, obtaining
a key. We also show how the authenticated channel assumed by the proto-
col can be constructed in a setting where, e.g., a public-key infrastructure is
available, and we show that the unilateral key is still a useful resource by
proving the folklore belief that A can be authenticated later by, e.g., sending
a password.

4.7. UNILATERAL KEY ESTABLISHMENT 155

4.7.1 Constructing a Unilateral Key

A unilateral key = =• (as specified in System 24) can be constructed using a
KEM scheme from a (single-message) insecure communication channel − →
from A to B and an authenticated communication channel ← −• if the KEM
scheme is CPA-secure. In more detail, we describe a protocol kem based on
any KEM that achieves the construction

(− →,← −•) kem−−−→ = =•.

The protocol is a pair kem = (decap, encap) of converters and is based
on a KEM scheme KEM = (KEMgen,KEMenc,KEMdec) as defined in Sec-
tion 2.4.5. The protocol kem then behaves as follows.

decap: Initially, generate a key pair (pk , sk) ←$ KEMgen() and output pk at
the inside sub-interface In.1.1?. Upon receiving the message

(
pk ′, c

)
at

the inside sub-interface In.2.1!, check whether pk ′ = pk , and compute
the key k ← KEMdec(sk , c). If the public key was correct, the compu-
tation succeeded, and the trigger at Out.1? has been given, output k at
the outside interface Out.1!.

encap: Upon receiving a key pk ′ at the inside sub-interface In.1.1!, compute
(k, c) ←$ KEMenc(pk ′) and output

(
c, pk ′

)
at the inside sub-interface

In.2.1?. Once the trigger at Out.1? has been provided, output k at the
outside interface Out.1!.

The client verifies the public key to detect whether it has been replaced by
the attacker; this is necessary for the protocol to actually construct the key
because the public key is transmitted over an insecure channel and may be
changed by an attacker.

We prove the construction with respect to the simulator σkem which be-
haves as follows:

1. Generate (pk , sk) ←$ KEMgen() and output pk at the first outside sub-
interface.

2. Upon input at the first outside sub-interface:

• On input pk ′ = pk , compute
(
k̄, c
)
←$ KEMenc(pk), output 0 at

the inside B-sub-interface, and output (pk , c) at the second outside
sub-interface.

• On input pk ′ 6= pk , compute
(
k̄, c
)
←$ KEMenc(pk ′), output 1 at

the inside B-sub-interface and k̄ at the inside key-sub-interface,
and output

(
pk ′, c

)
at the second outside sub-interface.

156 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

3. Upon receiving the trigger input � at the second outside sub-interface, if
pk was delivered in step 2, then output � at the inside A-sub-interface.

Theorem 4.14. For the protocol kem = (decap, encap) described above and the
simulator σkem,

(− →,← −•) p kem,σkem,(0,ε)
=========⇒ = =•,

with ε := J(GKEM-CPA
0 (KEM) | GKEM-CPA

1 (KEM))K ◦ (·C) and a reduction Ckem

described in the proof.

Proof. For the availability condition, we show

decapAencapB (− →⊥,← −•⊥) ≡ = =•⊥.

This follows directly from the correctness of the KEM scheme: for the key k ∈
K generated by (k, c)← KEMenc(pk), it holds that k = KEMdec(sk , c).

For the security condition, we show that(
decapAencapB (− →,← −•)

∣∣∣ σkemE= =•
)

= (CkemGKEM-CPA
0 (KEM) | CkemGKEM-CPA

1 (KEM)) ,

for a simple reduction Ckem that is defined as follows: it obtains the public
key pk at the inside interface and outputs it at the outside E-sub-interface.
Upon input pk ′ at the outside E-sub-interface,

• if pk ′ 6= pk , then Ckem computes (k′, c) ←$ KEMenc(pk ′) and outputs c
at the outside E-sub-interface and k′ at the outside B-sub-interface.

• if pk ′ = pk , then Ckem obtains (via chgen) a pair (k, c) and outputs c at
the outside E-sub-interface and k at the outside B-sub-interface.

In the case where pk ′ 6= pk is delivered, the outputs in both cases are
distributed equivalently. There is no output at the A-interface, the key k̄
obtained by KEMenc(pk ′) is output at the B-interface, and the value

(
pk ′, c

)
is output at the E-interface.

If pk is delivered, the distribution corresponds either exactly to the one
given by GKEM-CPA

0 (KEM) (when using the protocol), or to the one given by
GKEM-CPA

1 (KEM) (when using the resource = =• and the simulator). Overall,
this means that

decapAencapB (− →,← −•) ≡ CkemGKEM-CPA
0 (KEM)

4.7. UNILATERAL KEY ESTABLISHMENT 157

and
σkem

E= =• ≡ CkemGKEM-CPA
1 (KEM)

which with Lemma 2.6 concludes the proof.

Previous protocols for unilateral key establishment which are based on
KEMs generally required stronger assumptions such as CCA security or ran-
dom oracles. We emphasize, however, that the core of Shoup’s A-DHKE pro-
tocol [Sho99] is a Diffie-Hellman key establishment, and if one interprets that
as a KEM, then it is also used in this manner. A similar protocol based on a
KEM with CPA-security is described in the preprint of Dodis and Fiore [DF13];
their (independent) work, however, has a different focus and uses game-based
security definitions.

4.7.2 Constructing the Authenticated Channel

The construction in Section 4.7.1 assumes a pair of one single-use insecure
and one single-use authenticated channel in opposite directions, in a setting
with two parties (and one attacker). In a realistic scenario with multiple par-
ties A1, . . . , An, however, such a (dedicated) authenticated channel from B
to each Ai does not exist, and in this section we show how it is constructed
from realistic resources.

Authenticated Transmission of Single Messages

The aim of a public-key infrastructure in the unilateral setting is to provide the
parties A1, . . . , An with an authentic copy of party B’s public key. We model
this functionality of the PKI as a resource that takes one message from B
and distributes copies to A1, . . . , An, where the delivery of the copies may
be delayed or prevented by the attacker at the E-interface. (Technically, the
E-interface has for each i ∈ [n] a sub-interface that accepts an �-message to
provoke delivery.) The resource, which we denote as / �−•, is specified with
the same interface labels as the network, and is described in more detail as
Systems 30 and 31. Of course, a protocol based on a PKI and certificates is
only one possible way to construct this resource; any scheme that guarantees
that B’s public key is delivered authentically can be used.

The statement that a PKI constructs the resource / �−• with respect to
the construction notion used here does not faithfully model the use of PKIs
in current protocols. Intuitively, the reason is that the PKI is used by many
different parties, and the modeling we use requires that all these parties be-
have according to the proven protocol, which is an unjustifiable assumption

158 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

System 30 The resource / �−•⊥
1: upon m← B.1?
2: for i ∈ [n] do
3: Ai.1!← m
4: end for
5: end.

System 31 The resource / �−• with accessible E-interface

1: upon m← B.1?
2: E.1!← m
3: end.

4: once (B.1? 6= �) ∧ (E.i? = �)
5: Ai.1!← B.1?
6: end.

for large-scale PKIs. One way of resolving these issues is by slightly adapt-
ing the construction notion along the lines of the recent work of Canetti et
al. [CSV14]. A similar treatment following the paradigms used in our model
would result in resources which are correlated (as random variables), we do,
however, not pursue this question further here.

Authentication via Signatures

The resource / �−• allows a party B to transmit one message authentically to
all parties A1, . . . , An. To be useful in a key-establishment protocol where B
has to send a different authenticated message to each Ai, however, we apply
a signature scheme to “extend” this authentication to multiple transmissions.
The resource ���−•−•we construct has, as / �−•, one interfaceAi for each i ∈ [n],
one interfaceB with sub-interfacesB.i for each i ∈ [n] (for sending a message
to Ai), and one interface E, for the attacker. It is described in more detail as
Systems 32 and 33.

System 32 The resource ���−•−•⊥
1: upon m← B.i?
2: Ai.1!← m
3: end.

The construction uses, in addition to the authenticated channel / �−•, a
network of insecure channels which consists of, for each i ∈ [n], one insecure

4.7. UNILATERAL KEY ESTABLISHMENT 159

System 33 The resource ���−•−• with accessible E-interface

1: B ← ∅

2: upon m← B.i?
3: B ← B ∪ {m}
4: E.i!← m
5: end.

6: once (m← E.i? 6= �) ∧ (m ∈ B)
7: Ai.1!← m
8: end.

single-message communication channel ← − from B to Ai. This network is
defined analogously to the resource ← −•n in Section 4.6.1. The server’s in-
terface B has one sub-interface B.i for each i ∈ [n], which allows to send a
message intended for Ai, and each interface Ai (potentially) outputs a mes-
sage. The network can be described as the parallel composition of one re-
source ← − per i ∈ [n], where the A-interfaces of the channel (which has
interfaces A, B, and E) is relabeled as Ai-interface and the B-interfaces are
relabeled asB.i-sub-interface. We denote this resource as

∏
(I,J)∈P← −, with

the set P := {(Ai, B.i) : i ∈ [n]} indicating the interfaces names. For brevity,
we also use the notation ← −n .

The protocol sig = (vrf, . . . , vrf, sig) with converters vrf (for A1, . . . , An)
and sig (for B) use the signature scheme SIG = (SIGgen,SIGsgn,SIGvrf) in
the following way:

sig: Initially, generate a key pair (sk , vk) ←$ SIGgen and output vk at the in-
side interface In.1.1? (i.e., to / �−•). Upon receiving a message m ∈
{0, 1}∗ at the outside sub-interface Out.i?, compute s←$ SIGsgn(m)
and output (m, s) at the inside sub-interface In.2.i? (i.e., as directed
to Ai).

vrf: Once the verification key vk is received at the inside sub-interface In.1.1!
and a pair (m, s) is received at the inside sub-interface In.2.1!, com-
pute SIGvrf (vk ,m, s) and output m at the outside interface Out.1! if
the verification succeeds.

For the security statement, we use the following simulator σsig. Initially,
σsig generates a key pair

(
sk ′, vk ′

)
←$ SIGgen() and outputs vk ′ on the out-

side interface Out.1.1! (i.e., corresponding to / �−•). Upon a (trigger) input
at the outside sub-interface Out.1.Ai?, σsig records Ai as “having received the

160 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

verification key.” Whenever σsig obtains at the inside sub-interface In.i! for
some i ∈ [n] a message m′, σsig computes s′←$ SIGsgn

(
sk ′,m′

)
and outputs

(m′, s′) on the outside sub-interface Out.2.i! (corresponding to ← − to Ai).
Whenever σsig obtains at the outside sub-interface Out.2.i? for some i ∈ [n]
(corresponding to ← − to Ai) the input (m′, s′), if SIGvrf

(
vk ′,m′, s′

)
suc-

ceeds and once there has been an input m at interface In.j! for some j ∈ [n]
and the key vk ′ has been delivered to Ai, then output m′ at the inside sub-
interface In.i?.

Theorem 4.15. Let SIG = (SIGgen,SIGsgn,SIGvrf) be a signature scheme
and sig = (vrf, sig) be the pair of converters described above. For the simula-
tor σsig,

(/ �−•, ← −n) p
sig,σsig,(0,ε)

========⇒ ���−•−•,

with ε := JGEUF-CMA
n (SIG)K◦ (·Csig) and the reduction Csig described in the proof.

Proof. For the availability condition, we show that∏
i∈[n]

vrfAi

 sigB (/ �−•⊥, ← −n
⊥) ≡ ���−•−•⊥,

which follows directly from the correctness of the signature scheme.
For the security condition, we use the notation

R :=

∏
i∈[n]

vrfAi

 sigB (/ �−•, ← −n) and S := σsig
E���−•−•

and show that

J(R | S)K ≤ JGEUF-CMA
n (SIG)K ◦ (·Csig)

for the reduction Csig which, when connecting with its inside interface to
GEUF-CMA
n (SIG), simulates the same behavior as R at the outside interface.

In more detail Csig first outputs the verification key vk obtained from the
game at the left E.1.1!-sub-interface. Upon input a message mi at some
left A.1.i?, Cmac queries sign(mi) at the game, obtaining a signature s, and
outputs (m, s) at the left E.2.i!-sub-interface. Upon input a pair (m′, s′)
at the left E.2.i?-sub-interface, Csig verifies the signature and, in case of
success, outputs m′ at the left Ai.1!-sub-interface. The systems R, S, and
CsigG

EUF-CMA
n (SIG) are game-equivalent with respect to an MBO that formal-

izes that a forgery occurs, and using Lemma 2.14 concludes the proof.

4.7. UNILATERAL KEY ESTABLISHMENT 161

Creating Independent Sessions

To use independent instances of the KEM-based protocol for multiple differ-
ent clients, we need to separate the “sessions” of the protocol that corre-
spond to different honest clients. This is done in a “session protocol” sess =
(sc1, . . . , scn, ss) where B, when sending a message to Ai, includes the “name”
i when sending a message authentically via ���−•−•; this allows Ai to determine
whether it is the intended receiver of an authenticated message.

We denote the resource constructed by this protocol as
∏

(I,J)∈P← −•, the
notation is to be understood as follows. For each pair (I, J) ∈ P there is
one instance of the channel ← −• where the A-interface of the channel is
the I-interface of the combined resource, and the B-interface of the chan-
nel is the J -interface of the combined resource. As the set is instantiated
by pairs (Ai, B.i), the combined resources has interfaces A1, . . . , An and B,
where the interface B has sub-interfaces B.1, . . . , B.n.

The protocol sess that achieves the construction is specified as follows.

sc: Upon receiving a message m′ at the inside interface (i.e., from ���−•−•) such
that m′ = (i,m′′), output m′′ at the outside interface.

ss: Upon receiving an input m′ at the outside i-sub-interface, send (i,m′) via
the inside i-sub-interface.

The security statement is proven with respect to the simulator σsess that,
when it obtains a message at its inside interface, behaves as follows. For a
message m′ corresponding to the authenticated channel to Ai, output (i,m′)
as transmitted via ���−•−• to Ai. On receiving messages at the outside interface,
σsess behaves as follows: Upon delivery of a message (i,m) via ���−•−• to Ai,
output the trigger input at the inside sub-interface corresponding to the au-
thenticated channel to Ai. (If the value i in the message does not match the
index of Ai, drop the message and do not process further messages to Ai.)

Theorem 4.16. For the protocol sess = (sc1, . . . , scn, ss) described above and
simulator σsess,

���−•−• p sess,σsess,(0,0)
=========⇒

∏
(I,J)∈P

← −•,

where the set P is defined as P := {(Ai, B.i) : i ∈ [n]}.

Proof. The validity of the availability condition, i.e., the statement∏
i∈[n]

sci
Ai

 ssB���−•−•⊥ ≡
∏

(I,J)∈P

← −•⊥

162 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

follows from the correctness of the protocol. The converter ss, upon input a
message m at the outside sub-interface i, sends the pair of message m and i,
which the converter sci verifies. Since the verification always succeeds, mes-
sages are always output at the correct interface Ai

The security condition corresponds to the equivalence∏
i∈[n]

sci
Ai

 ssB���−•−• ≡ σsess
E

 ∏
(I,J)∈P

← −•

 .

As each input to one system leads to exactly the same output as in the other
system, the claimed equivalence holds.

���−•−•
sc

sc
ss B

E

A1

A2

(a) Splitting the multi-channel into ses-
sions.

← −•

← −•

σ

BB

E

A1

A2

(b) Parallel authenticated chan-
nels.

Figure 4.9: The session protocol splitting the multi-channel into a parallel
composition of single channels.

Each of the constructed channels ← −• from B.i to Ai can now be used
together with an insecure channel from Ai to Bi for using one instance of the
unilateral key establishment protocol. The composition theorems allow to de-
duce the corresponding security bounds for a protocol consisting of multiple
steps or sessions.

Using names or nonces for separating sessions. The protocol sess uses
the identifiers i ∈ [n] of the parties A1, . . . , An to “separate” the sessions by
sending the messages together with the value i—a converter sci will accept
a message only if it contains the corresponding value. This approach can be
generalized by assuming a resource that outputs a unique value to each of the
partiesA1, . . . , An. In this case, the converter sc need not be parametrized and
sends the obtained value to B initially. The resource providing the unique val-
ues can then be constructed probabilistically by having all parties A1, . . . , An
choose a random nonce.

4.7. UNILATERAL KEY ESTABLISHMENT 163

4.7.3 Authenticating a Unilateral Key

IfA andB share a password (which can be viewed as a key with low entropy),
one can even construct a fully secure key from a unilateral one. (Note that a
password cannot be directly used as a key in cryptographic schemes, because
the contained entropy is too small.) The protocol is straightforward: A sends
the password one-time pad encrypted using some part of the unilateral key,
and outputs the unused part of the key as the key to be used by higher-level
schemes. B decrypts (using the corresponding part of the unilateral key)
and verifies the password; if the verification fails, all further messages are
dropped. If the verification succeeds, B outputs the unused part of the key.
Additionally, we let both parties output the password along with the key; this
formalizes that the same password can be used to authenticate several keys
(by the composition theorem).

Let Q be a distribution over {0, 1}l with a certain maximum guessing prob-
ability ε ∈ [0, 1];9 this models the assumption about the distribution of pass-
words. Then we denote by Q the resource that chooses a password q ← Q
according to the distribution and outputs it at the A- and B-interfaces; the
resource is defined analogously to •= =• with the particular distribution Q.
We then denote by PWD = (pwd-snd, pwd-chk) the simple protocol sketched
above, which in more detail works as follows.

pwd-snd: The converter initially outputs triggers at the inside sub-interfaces
In.1.1? and In.2.1?. Upon receiving k ← In.1.1! and q ← In.2.1!, pwd-snd
splits k1.k2 ← k with |k1| = l, computes c ← q ⊕ k1, and outputs c
at the inside sub-interface In.3.1? and k2 and q at the outside sub-
interfaces Out.1! and Out.2!, respectively.

pwd-chk: The converter initially outputs triggers at the inside sub-interfaces
In.1.1? and In.2.1?. Upon receiving k ← In.1.1!, q ← In.2.1!, and c′ ←
In.3.1!, pwd-chk splits k1.k2 ← k with |k1| = l, compares c′ = q ⊕
k1, and if the values are equal outputs k2 and q at the outside sub-
interfaces Out.1! and Out.2!, respectively.

The construction is achieved relative to a simulator σPWD that behaves as
follows. Obtaining an input r ← Out.1.B? ∈ {0, 1} at the outside B-sub-
interface corresponding to = =•:

• if r = 0, then upon input trigger values at Out.1.A? and Out.2.A?,
simulate a uniformly random string c ∈ {0, 1}l at the outside sub-

9We assume all passwords to be of the same length, the protocol extends to passwords with
variable length by applying a suitable padding, which can be seen as an additional construction
step.

164 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

interface Out.3.1! and output the trigger value at the inside sub-inter-
faces In.1.A? and In.2.A? (i.e., to Q and •= =•). Upon input a string c′ ∈
{0, 1}∗ at the outside sub-interface corresponding to − →, if c = c′ then
output the trigger value at the inside sub-interfaces In.1.B? and In.2.B?
(i.e., of Q and •= =•).

• if r = 1, accept inputs but otherwise remain inactive.

The described protocol indeed achieves the described construction; the
failure probability is exactly the attacker’s probability of guessing the pass-
word. Note that in case the attacker shares the unilateral key with B, the
password is not output and hence cannot be used in further protocol sessions.

Theorem 4.17. Let Q be a (password) distribution with maximum guessing
probability ε. Then for the simulator σPWD,

(= =•,Q,− →) p PWD,σ,ε
======⇒ (•= =•,Q) ,

where the symbols correspond to families of resources
κ-bit

= =•, Ql,
l bits

− →, and
κ−l-bit•= =•.

Proof. The availability condition, that is,

pwd-sndApwd-chkB (= =•⊥,Q⊥,− →⊥) ≡ (•= =•⊥,Q⊥)

follows since the same password and key are given to A and B, and by the
correctness of the one-time pad analogously to Theorem 4.4.

For the security condition, we show that if E.B? = 0, then the systems
pwd-sndApwd-chkB (= =•,Q,− →) and σE•= =• exhibit the same behavior.
Once the trigger input for A is provided at the E-interface, a password and a
uniformly random (κ− l)-bit key is output at the A-interface and a uniformly
random l-bit string is output at the E-interface (at the sub-interface corre-
sponding to − →). If the same string is forwarded, the password and the
(κ− l)-bit key are also output at the B-interface, otherwise nothing is output
there. This follows because, within pwd-chk, a different ciphertext c′ 6= c will
necessarily lead to a different result in the decryption, and hence the verifi-
cation of the password will fail. The simulator achieves the same behavior by
its definition.

To prove the remaining case, we define a monotone binary output (MBO)
on the random system described by pwd-sndApwd-chkB (= =•,Q,− →) that
becomes 1 once E.B? = 1 and the attacker guesses the correct password, i.e.,
for the values k′ ∈ {0, 1}κ and c′ ∈ {0, 1}∗ provided to = =• and − →, it
holds that |c′| = l and the XOR with the first l bits of k is equal to the pass-
word q. The system pwd-sndApwd-chkB (= =•,Q,− →) with the described

4.7. UNILATERAL KEY ESTABLISHMENT 165

MBO is conditionally equivalent to σE•= =• as it is equivalent for E.B? = 0
and for E.B? = 1 given that the password guess is wrong. Hence, using
Theorem 2.16, it follows that the distinguishing advantage is bounded by the
probability ε of guessing the password.

The constructed key can now of course be used as an assumed resource in
any further construction, in particular one can now construct a secure chan-
nel by use of a MAC and a symmetric encryption scheme as discussed in Sec-
tions 4.3 and 4.4.

Practical protocols based on TLS, if used in a scenario with unilateral au-
thentication, follow a different approach. The unilateral key obtained there
is used to construct a pair of multiple-use secure channels which are unilat-
eral but consistent in the sense that the server either communicates with the
client, or the server communicates with the attacker. This pair of channels
can then be authenticated (similarly to the example protocol shown here) by
having the client send the password over the unilateral channel. The security
proof then formalizes the intuitive argument that if the server receives the
password, it can immediately conclude that it communicates with the client.
The error term, as in the protocol above, includes the guessing probability for
the assumed password distribution. This approach is sketched in more detail
by Maurer et al. [MTC13].

166 CHAPTER 4. RESOURCES FOR SECURE COMMUNICATION

Chapter 5

A Constructive Perspective
on the TLS Record Layer

The TLS protocol is the most widely deployed cryptographic protocol on the
Internet; its goal is to provide secure communication between two computers.
The protocol can conceptually be decomposed into two phases: In the first
phase, the handshake protocol, the two parties establish a secret key. In the
second phase, the record-layer protocol uses the established key to protect the
transmission of payload messages. In this section, we focus on proving the
security of the record-layer protocol based on the assumption that a key has
already been established.

The record-layer protocol defines multiple different cipher suites, the one
that is actually used in a protocol session is negotiated during the handshake
protocol. The most common cipher suites are based on the Authenticate-then-
Encrypt transformation of a symmetric encryption scheme and a message au-
thentication code, but modes based on authenticated encryption are also de-
fined. While vulnerabilities [Rog95, Bar04] in the original specification and
the general sensitivity of AtE to side-channel attacks [Vau02, AP12, AP13]
have led to various practical attacks on the protocol, recent versions of the
protocol can be proven secure (in models which do not capture timing at-
tacks). In this section, we prove that the cipher suites based on Authenticate-
then-Encrypt are indeed secure. The material in this section has been adapted
from its original publication [MT10] to focus more on the analysis of the ac-
tual TLS protocol.

Following the constructive cryptography paradigm, the Authenticate-then-
Encrypt modes of the TLS record-layer protocol can be seen as first construct-
ing a confidential (but malleable) channel using the encryption scheme, and

167

168 CHAPTER 5. THE TLS RECORD LAYER

then constructing a secure channel by use of a MAC. While Authenticate-then-
Encrypt is not secure in general [Kra01, BN08], for the schemes employed in
TLS the protocol is still secure [Kra01, MT10, PRS11].

5.1 Encryption

The TLS protocol as described in RFC 5246 [DR08] specifies two different
types of encryption for the AtE modes: The stream cipher RC4, and block
ciphers (3DES and AES) in CBC mode. We show for both modes that they
construct a confidential channel which is still malleable, where the exact type
of malleability depends on the encryption scheme.

5.1.1 Cipher Suites Based on Stream Ciphers

As discussed in Section 4.4.1, a stream cipher for a single message can be
seen as a one-time pad encryption with a pseudo-random key stream. TLS
uses a continuous key stream to encrypt a sequence of messages, where for
each message a distinct subsequent part of the stream is used. Since the
stream cipher is used on an insecure channel, the constructed confidential
channel exhibits XOR-malleability as sketched in System 17, but further effects
originating from variable message lengths and multiple messages must be
considered in the case of TLS.

The stream cipher mode of TLS is described as a pair of converters motp =
(motp-enc,motp-dec) which, at the inside interface, connects to a key stream
〈 1-bit•= =•〉 and an insecure multiple-use channel −�. Multiple messages are
encrypted (and decrypted) using subsequent parts of the key stream. The
converters are in more detail described as follows; they process the messages
in order.

motp-enc: Upon input the i-th message mi ← Out.i?, encrypt it by adding bit-
by-bit the key bits with indices r =

(∑i−1
j=1 |mj |

)
+1, . . . ,

(∑i
j=1 |mj |

)
+

1 obtained at the respective sub-interfaces In.1.r! (obtained upon input
the respective triggers at In.1.r?) and output the computed ciphertext at
sub-interface In.2.i?.

motp-dec: Upon receiving the i-th ciphertext c′i ← In.2.i!, decrypt the mes-

sage by adding bit-by-bit the key bits with indices r =
(∑i−1

j=1

∣∣c′j∣∣) +

1, . . . ,
(∑i

j=1

∣∣c′j∣∣) + 1 obtained at the respective sub-interfaces In.1.r!

(upon input the respective triggers at In.1.r?) and output the computed
plaintext at the sub-interface Out.i!.

5.1. ENCRYPTION 169

As the ciphertexts are transmitted via an insecure channel, the lengths of
the received ciphertexts may differ from the lengths of the messages that
were encrypted. As subsequent messages are encrypted and decrypted using
subsequent parts of the key stream, the malleability of the channel cannot be
described as a transformation on individual messages.

The XOR-malleable multiple-use channel. In the XOR-malleable multiple-
use channel −⊕�•, which is described as System 34, all inputs A.i?, E.i? and
outputs B.i!, E.i! take values in {0, 1}∗. It is not immediately clear that the
channel −⊕�• should be considered confidential, because the computation
of E.i! indeed involves bits of the plaintext message. Those are XORed, how-
ever, with a bit string that is uniformly random from the perspective of the at-
tacker at the E-interface. In the following, for a string x = x1 · · ·xn ∈ {0, 1}∗
and i ≤ n, we refer by x [i] = xi to the i-th element of the string x. Fur-
thermore, we use the notation x [i : j] := (xi, . . . , xj), with the shorthands
x [: i] := x [1 : i] and x [−i :] := x [n− i+ 1 : n], to refer to sub-strings of the
string x.

The description of the channel is rather complicated and the only appar-
ent application of the channel is to use it as an assumed resource in a protocol
that is based on a MAC and constructs a secure channel. The complexity of
the description appears to be inherent to the specified guarantee and due to
the fact that the messages have variable length and are treated as a bit stream.
Encryption schemes such as the one-time pad or stream ciphers should gen-
erally be used on an authenticated channel.

The construction of the XOR-malleable channel. The protocol motp con-
structs an XOR-malleable multiple-use channel from a key stream 〈 1-bit•= =•〉 and
an insecure multiple-use channel −�. The simulator σmotp used for this
statement is simple: It basically forwards the messages between the inside-
and outside interfaces. In more detail,

• Upon input ci ← In.i! ∈ {0, 1}∗, once all trigger inputs Out.1.r.A?

with r between
∑j−1
k=1 |ck|+1 and

∑j
k=1 |ck| have been provided, output

Out.2.i!← ci.

• Upon input c′i ← Out.2.i?, once all Out.2.j? 6= � for j < i and all trigger
inputs Out.1.r.B? with r between

∑j−1
k=1 |c′k| + 1 and

∑j
k=1 |c′k| have

been provided, output In.i?← c′i.

With respect to this simulator σmotp, we prove that the multiple-use one-time
pad constructs the channel −⊕�• from a stream of key bits and a multiple-use
insecure channel.

170 CHAPTER 5. THE TLS RECORD LAYER

System 34 Continuously XOR-malleable multiple-use channel −⊕�•
1: Lin ← 0; Lout ← 0; Qbits ← ε

2: once (∀j ≤ i : A.j? 6= �) ∧ (∀j < i : E.j! 6= �) . All previous messages
are processed.

3: µ← min {max {Lout − Lin, 0} , |A.i?|} . Number of “determined” bits.
4: ν ← |A.i?| − µ . Number of “fresh” bits.
5: if µ > 0 then . Bits determined by previous output.
6: s1 ← (Qbits [Lin + 1 : Lin + µ]⊕ (A.i?) [1 : µ])
7: end if
8: if ν > 0 then . Fresh bits are chosen at random
9: s2←$ {0, 1}ν

10: Qbits ← Qbits. (s2 ⊕A.i? [−ν :])
54: end if
74: Lin ← Lin + |A.i?|
90: E.i!← s1.s2

14: end.

15: once (∀j ≤ i : E.j? 6= �) ∧ (∀j < i : B.j! 6= �)
16: µ← min {max {Lin − Lout, 0} , |E.i?|} . Number of “determined” bits.
17: ν ← |E.i?| − µ . Number of “fresh” bits.
18: if µ > 0 then . Available bits are computed by masking.
19: s1 ← (Qbits [Lout + 1 : Lout + µ])⊕ (E.i?) [1 : µ]
20: end if
21: if ν > 0 then . Fresh bits are chosen at random.
22: s2←$ {0, 1}ν
23: Qbits ← Qbits. (s2 ⊕ E.i? [−ν :])
24: end if
25: Lout ← Lout + |E.i?|
26: B.i!← s1.s2

27: end.

5.1. ENCRYPTION 171

Theorem 5.1. The multiple-use one-time pad protocol motp constructs the con-
tinuously XOR-malleable channel −⊕�• from the insecure channel −� and a
key stream 〈•= =•〉. For the simulator σmotp,(〈

1-bit•= =•
〉
,−�

)
p
motp,σmotp,(0,0)

==========⇒ −⊕�•,

where the construction is with respect to sequences 〈 1-bit•= =•〉[`],
` bits

−�, and
` bits

−⊕�•,
in ` ∈ N.

Proof. For the correctness condition, the statement we want to prove is that
for all ` ∈ N,

motp-encAmotp-decB
(〈

1-bit•= =•⊥
〉

[`]
,
` bits

−�⊥

)
≡

` bits

−⊕�•⊥.

Denote the key bit output by the i-th copy of the key resource as ki. Then the
messages m1,m2, . . . lead to the ciphertexts

m1 ⊕ (k1 . . . k|m1|),m2 ⊕ (k|m1|+1 . . . k|m1|+|m2|), . . .

generated by motp-enc, while motp-dec adds the same key bits and outputs
m1,m2, The constructed resource simply forwards the messages. Both
systems provide output until the accumulated length of inputs is longer than `.

For the security condition, for all ` ∈ N, we show that

motp-encAmotp-decB
(〈

1-bit•= =•
〉

[`]
,
` bits

−�

)
≡ σmotp

E
` bits

−⊕�•.

We use the notation R for the left-hand side and S for the right-hand side of
the equivalence.

For the resource R, on inputs m1,m2, . . . at the A-interface, the output
at the E-interface is m1 ⊕ (k1.k|m1|),m2 ⊕ (k|m1|+1.k|m1|+|m2|),
The output at the B-interface on inputs c′1, c

′
2, . . . at the E-interface is c′1 ⊕

(k1.k|c′1|), c
′
2 ⊕ (k|c′1|+1.k|c′1|+|c′2|), . . . , where all key bits are indepen-

dent and distributed uniformly, which follows directly by the definition of
motp.

To describe S, consider a state where qA messages m1, . . . ,mqA have been
input at the A-interface, and qE messages c′1, . . . , c

′
qE have been input at the

E-interface. We define the terms LAj :=
∑j
`=1 |mj | and LEj :=

∑j
`=1 |c′j |.

The concatenation of the messages at the A-interface is a bit string m =
m1.mqA ; so are the outputs c = c1.cqA at the E-interface, the inputs
c′ = c′1.c

′
qE at the E-interface, and the outputs m′ = m′1.m

′
qE at the

B-interface. The output of S is distributed as follows:

172 CHAPTER 5. THE TLS RECORD LAYER

• On input mqA+1 at the A-interface,

– For LAqA < i ≤ min
{
LAqA+1, L

E
qE

}
, the output bit c [i] is determined

as c [i] = m [i] ⊕ c′ [i] ⊕m′ [i]. The same equality holds in the case
of R.

– For LEqE < i ≤ LAqA+1, the bit c [i] is uniformly random. This is
the same in the case of R, where the key bit ki (and hence the
respective ciphertext bit) is uniformly random.

• On input mqE+1 at the E-interface,

– For LEqE < i ≤ min
{
LEqE , L

A
qA

}
, the output bit m′ [i] is determined

as m′ [i] = m [i] ⊕ c′ [i] ⊕ c [i]. The same equality holds in the case
of R.

– For LAqA < i ≤ LEqE+1, the bit m′ [i] is uniformly random. This is
the same in the case of R, where the key bit ki (and hence the
respective message bit) is uniformly random.

The proof concludes by observing that also here, both systems provide output
until the accumulated input length exceeds ` bits. As the systems are equiva-
lent, the output of each distinguisher has the same distribution in both cases
and hence the distinguishing advantage is 0.

The XOR-malleable channel −⊕�• is not a useful resource on its own, but
a (strongly unforgeable) MAC constructs from −⊕�• and a shared key •= =•
a fully secure channel, as shown in Section 5.2.

5.1.2 Cipher Suites Based on CBC-Mode Encryption

The CBC-mode encryption based on a shared URP has been described for a
single message in Section 4.4.2. The extension to the multiple-message case
is straightforward: For each message, one chooses a fresh initialization vector
uniformly at random and then applies the same encryption mechanism as
before. In early versions of SSL/TLS, the initialization vector was not chosen
as a fresh block, but the final block of the previous ciphertext was used. This
mistake was pointed out by Rogaway [Rog95] and Bard [Bar04] and lead to
a vulnerability exploited in the BEAST attack [DR11]. The vulnerability was
fixed in TLS 1.1.

We describe the multiple-use version of CBC-mode encryption based on
an n-bit permutation as a pair of converters mcbcn = (mcbc-encn,mcbc-encn)
using the following notation for the inputs and outputs. Consistently with the
notation in Section 4.4.2, we use mi = mi,1.mi,2. . . . to denote the plaintext

5.1. ENCRYPTION 173

messages input to the encryption converter mcbc-encn, which consist of n-bit
blocks mi,j ∈ {0, 1}n. We use ci = ci,0.ci,1. . . . for the ciphertexts generated
by mcbc-encn and c′i = c′i,0.c

′
i,1. . . . for ciphertexts received by mcbc-decn, and

m′i = m′i,0.m
′
i,1. . . . for plaintexts output by mcbc-decn.

The block-malleable multiple-use channel. The malleability of the chan-
nel constructed by the protocol mcbcn from a shared URP and an insecure
channel resembles the block-oriented structure of the encryption scheme;
it is formally described as System 35. The inputs and outputs at the E-
interface have labels in i ∈ N, and all inputs and outputs are bit strings of
length ` ∈ n · N.

As during the decryption in mcbc-decn the ciphertext is split into blocks,
and each of the blocks (except for the first one) corresponds to one block
of plaintext, each input at the E-interface of −�n�• can be viewed as de-
scribing an output at the B-interface in a block-wise way. Each output block
m′i,j ∈ {0, 1}n at the B-interface is either (nearly) uniformly random (if the
ciphertext block was not used before) or specified by a block mr,s or m′r,s
from a previous message and a mask x ∈ {0, 1}n (obtained as the XOR of
two ciphertext blocks; this is due to the fact that the previous ciphertext block
is XORed to the subsequent plaintext block). Hence, the attacker can “apply
masks” x ∈ {0, 1}n such that x = cr,s−1⊕c′i,j−1 (or x = c′r,s−1⊕c′i,j−1), where
c′i,j−1 is the ciphertext corresponding to the preceding block (and may hence
essentially be chosen if j = 1 or the preceding block does not correspond to a
previously used one).

As for the XOR-malleable channel, the description of the channel is com-
plicated and the only apparent application of the channel is to use it as an
assumed resource in a protocol that is based on a MAC and constructs a se-
cure channel.

Construction of the block-malleable channel. The protocol mcbcn con-
structs the block-malleable multiple-use channel−�n�• from a shared URP

↔
Pn

and an insecure multi-message channel −�. The construction is proven rel-
ative to a simulator σmcbc that (basically) forwards the messages between
the inside interface and the second outside interface, with the exception that
messages are forwarded from inside to outside once the input Out.1.A? has
been provided, and messages are forwarded from outside to inside only once
the input Out.1.B? has been provided. The statement is formalized in the
following theorem.

Theorem 5.2. The protocol mcbcn = (mcbc-encn,mcbc-decn) constructs the
n-bit block-malleable channel −�n�• from the insecure channel −� and shared

174 CHAPTER 5. THE TLS RECORD LAYER

System 35 Continuously block-malleable multiple-use channel −�n�•
1: B,B′ ← ∅
2: c∗,−1, c

′
∗,−1 ← 0 · · · 0 ∈ {0, 1}n

3: once (∀j ≤ i : A.j? 6= �) ∧ (∀j < i : E.j! 6= �) . First unprocessed one.
4: l← |A.i?|

n
5: mi,1.mi,l ← A.i? . Split the message into blocks.
6: ci,0←$ {0, 1}n . Choose the IV uniformly at random.
7: for j = 1, . . . , l do
8: ci,j ←$ {0, 1}n \ (B ∪ B′) . Sample blocks without collisions.
9: B ← B ∪ {ci,j}

10: end for
11: E.i!← ci,0.ci,l . Assemble the ciphertext.
12: end.

13: once (∀j ≤ i : E.j? 6= �) ∧ (∀j < i : B.j! 6= �)

14: l← |E.i?|
n − 1 . Plaintext message is one block shorter.

15: c′i,0.c
′
i,l ← E.i? . Split into n-bit strings.

16: m′i ← ε
17: for j = 1, . . . , l do
18: if c′i,j ∈ B then . Block used in a message (not IV) before.
19: Let ī, j̄ ∈ N such that cī,j̄ = c′i,j
20: m′i,j ← mī,j̄ ⊕ cī,j̄−1 ⊕ c′i,j−1 . Compute from previous
21: else if c′i,j ∈ B′ then . Block injected as message (not IV) before.
22: Let ī, j̄ ∈ N such that c′

ī,j̄
= c′i,j and ī < i

23: m′i,j ← m′
ī,j̄
⊕ c′

ī,j̄−1
⊕ c′i,j−1 . Compute from previous.

24: else . Fresh block (or used as IV).
25: m′i,j ←$ {0, 1}n . Determine new value for URP.
26: B′ ← B′ ∪ {c′i,j}
27: end if
28: end for
29: B.i!← m′i,1.m

′
i,l . Assemble the message.

30: end.

5.1. ENCRYPTION 175

uniform random permutation
↔
Pn, with error (q`/n)2/2n for q messages of length

at most `. For the simulator σmcbc,(↔
Pn,−�

)
p
mcbcn,σmcbc,(0,εq,`,n)

==============⇒ −�n�•,

where the symbols refer to families
↔
P
|q`/n
n ,

q×(`+n) bits

−� , and
q×` bits

−�n�• in q ∈ N and
` ∈ n · N with εq,`,n = 5(q`/n)2/2n+1.

The channel −�n�• is not a monotone system according to Section 3.4.1.
This is due to the fact that the blocks output at the E-interface are sampled
uniformly, while the blocks output at the B-interface are computed to be con-
sistent with the previous outputs at the E-interface. This can, however, be
captured by a suitable MBO, such that the resulting system is monotone un-
less the MBO becomes 1. (This is not relevant in this proof but in the proof of
Theorem 5.4.)

Proof. For the correctness condition, the statement to be proven is that for all
q, ` ∈ N,

mcbc-encn
Amcbc-decn

B

(
↔
P|q`/nn ⊥,

q×(`+n) bits

−� ⊥

)
≡

q×` bits

−�n�•⊥.

This follows analogously to the correctness condition in Theorem 4.6.
For the security condition (again for all q, ` ∈ N), i.e.(
mcbc-encn

Amcbc-decn
B

(
↔
P|q`/nn ,

q×(`+n) bits

−�

) ∣∣∣∣ σmcbc
E

q×` bits

−�n�•
)

≤ εq,`,n,

we use the notation R for the left-hand side and S for the right-hand side of
the distinction problem.

We extend both systems R and S by a monotone binary output (MBO).
For R, the MBO becomes 1 as soon as for an output E.i!, one of the blocks ci,j
for j ∈ [li] with li := |mi|

n collides either with a previous block ci′,j′ with
i′ ≤ i, j′ ∈ [li′] (with li′ defined analogous to li), or with a block c′i′,j′ of a
message previously input as E.i′?. For S, the MBO becomes 1 as soon as for
two pairs of indices (i, j) 6= (i′, j′), the values ci,j−1 ⊕mi,j (or c′i,j−1 ⊕m′i,j)
and ci′,j′−1 ⊕mi′,j′ (or c′i′,j′−1 ⊕m′i′,j′) coincide.

We define an additional system H that behaves essentially as S but sam-
ples the message blocks such that no collision of the type described for S
occurs. Then, on the one hand, the conditional equivalence Ŝ |≡ H holds
trivially by the definition of H. On the other hand, R̂ |≡ H holds as well. The
distribution of outputs on an input at the E-interface is exactly the same, and

176 CHAPTER 5. THE TLS RECORD LAYER

the distribution of the outputs of both systems on an input at the A-interface
is, analogous to above, the uniform distribution on all admissible values.

To complete the proof, it is sufficient to analyze the probabilities of (non-
adaptively) provoking the MBOs in the two systems.

Provoking the MBO in R̂: The MBO in R̂ formalizes collisions in the cipher-
text blocks output at interface E. Such a collision occurs if and only if two
inputs to the shared URP

↔
P are equal, as P implements a permutation. The

proof now proceeds as follows: The shared URP
↔
Pn is replaced by a system

↔
P′n which builds a function table P : {0, 1}n → {0, 1}n and its inverse P−1

“on demand,” answering consistently with previous queries if defined, and
otherwise sampling each response to a query (independent of the direction)
uniformly at random.

As a random system, P′n keeps two (initially empty) partial mappings
P, P−1 ⊂ ({0, 1}n → {0, 1}n). Upon an input Xi = (fwd, x) with x ∈ {0, 1}n,
if x /∈ imP , then it samples y←$ {0, 1}n and sets P ← P ∪ {(x, y)}. If
P−1(y) = �, then P−1 ← P−1 ∪ {(y, x)}. Finally, it outputs Yi = P (x).
Upon an input Xi = (bwd, y), if y /∈ imP−1, then it samples x←$ {0, 1}n
and sets P−1 ← P−1 ∪ {(y, x)}. If P (x) = �, then set P ← P ∪ {(x, y)}.
Finally, it outputs Yi = P−1(y). (Intuitively, contradictions between queries
are resolved by giving precedence to the already defined value.)

We define

R′ = mcbc-encn
Amcbc-decn

B

(
↔
P′
|q`/n
n ,

q×(`+n) bits

−�

)
as well as a monotone binary output A = (A1, A2, . . .) on P′n as follows. The
MBO becomes 1 if

• there are i, j with Xi = (fwd, x) 6= Xj = (fwd, x′) but Yi = Yj ,

• or there are i, j with Xi = (bwd, y) 6= (bwd, y′) but Yi = Yj;

• there are i, j with Xi = (fwd, x) and Xj = (bwd, y), such that Yi = y but
x 6= Yj ,

• or there are i, j with Xi = (fwd, x) and Xj = (bwd, y), such that Yi 6= y
but x = Yj .

Then we obtain that P′n
A |≡ Pn, since the only way for P′n to become in-

consistent with Pn is by a collision that is exactly captured by the MBO A;
the conditional equivalence holds as the MBO is defined only on the outputs.
(As

↔
Pn and

↔
P′n differ from Pn and Pn only by how the inputs and outputs

5.1. ENCRYPTION 177

are assigned to interfaces, this also means that
↔
P′n

A′

|≡
↔
Pn with respect to

an MBO A′ which is a slightly modified definition of the MBO A according
to the interfaces of

↔
P′.) As the other systems in R and R′ do not affect the

MBO, the conditional equivalence R̂′ |≡ R with the same MBO defined on the
sub-system

↔
P′n holds holds.

We define an additional MBO on P′n (and Pn) which formalizes a collision
on the inputs. More formally, the MBO B = (B1, B2, . . .) becomes 1 if there
are i, j with Xi = (fwd, x) = Xj for some x ∈ {0, 1}n. Then RB |≡ H,
because the outputs at the E-interface will output blocks which are uniformly
random, but without collisions. We can directly conclude that R′

A′∨B |≡ H;
both systems can be described as sampling the outputs based on lazy sampling
of the URP.

Now we bound the performance
q
RB

y
, where we clearly have

q
RB

y
≤

r
R′

A′∨B
z
,

as
q
RB

y
corresponds to the probability where in the system R′

A′∨B the
MBO B is provoked before the MBO A′. Hence, it is sufficient to bound the
advantage

r
R′

A′∨B
z

.

As the probability of provoking the MBO A′ ∨ B is bounded by the prob-
ability to sample an output that contradicts to the previously sampled part
of a distribution and the undefined values in P′n are sampled uniformly at
random, we obtain the same bound as for the standard collision probability,
hence

J(R | H)K ≤
r
R′

A′∨B
z
≤ (q`/n)

2

2n−1
,

since overall up to 2q`/n queries are made to P′n.

Provoking the MBO in Ŝ: We define an MBO C on S that becomes 1 if any
two blocks output at the E-interface collide. As in H the blocks are chosen
uniformly at random such that no collision occurs and the systems otherwise
behave equivalently, we obtain Ŝ |≡ H. By the standard collision probability,
the probability of provoking this MBO (and hence the distinguishing advan-
tage) is bounded by (q`/n)2/2n+1.

Finally

J(R | S)K ≤ J(R | H)K + J(H | S)K ≤ 5 (q`/n)
2

2n+1
,

which concludes the proof.

178 CHAPTER 5. THE TLS RECORD LAYER

The bound stated in the original publication [MT10] is different from the
one obtained in the proof; the bound given in the statement is too tight by
a factor of 2. The bound is not optimal: Paterson et al. [PRS11] describe
bounds (for the composed scheme) in which the terms corresponding to the
CBC-mode encryption are roughly comparable to the ones we describe here,
but they achieve slightly better (constant) factors by a more detailed analysis.
This can be viewed as that the MBO we describe in the proof of Theorem 5.2
is slightly too permissive.

5.2 Padding and Authentication

The second step in the SSL/TLS record-layer protocol takes care of the mes-
sage authentication and is based on a MAC, sequence numbers, and a specific
encoding. This sub-protocol can be seen as a construction of a secure channel
from the malleable confidential channel and a secret key. A sequence num-
ber is included in the computation of the MAC to ensure that the messages
arrive in the correct order. The plaintext and the MAC are then encoded in a
specific format (which may include compression and also padding in the case
of CBC-mode encryption) before the obtained string is transmitted over the
confidential channel; this is why Paterson et al. [PRS11] refer to the mode as
MEE (MAC-Encode-Encrypt).

We specify these protocol steps of the protocol as a pair of converters
tls-mac = (tls-tag, tls-chk), which is conceptually depicted in Figure 5.1. The
protocol is based on the following components.

• A MAC function mac : {0, 1}k × {0, 1}≤17510 → {0, 1}160. In TLS 1.2,
the MAC functions are based on HMAC with SHA-1, SHA-256, or (dep-
recated) MD5 [DR08].

• A sequence number in
{

0, . . . , 264 − 1
}

. While the MAC is computed on
the plaintext message and the sequence number, the sequence number
is not sent with the message. Rather, the receiver also computes the
sequence number and uses the locally computed number in the verifica-
tion of the MAC.

• A padding function Enc : {0, 1}≤17510+160 → {0, 1}≤18432; the function
must be injective to be decodable. We assume that Enc−1 returns � on
values not in the range of Enc.

The padding scheme used in TLS ensures that the length of authenti-
cated plaintexts is a multiple of n bits. Given a plaintext message m

5.2. PADDING AND AUTHENTICATION 179

with l := |m|, the length of the padded message generated by the ba-
sic version1 of the TLS padding scheme is l̂ = nd(l + 8)/le and the last
lbyte = (l̂− l)/8 bytes are filled with the value lbyte (in standard encoding
as an octet). The described variant is a function, and invalidly padded
messages are rejected.

The MAC is computed on the string macEnc(m, i) = 〈i〉64 .x. 〈|m|〉16 .m, where
〈i〉` means that i ∈ N is encoded as an `-bit string, and x is a value that
encodes the type of the message (i.e., handshake, payload, alert,. . .) and the
version of the protocol in use.

−�•

•= =•

tls-tag tls-chk
Enc Enc−1

mac check
seq seq′

A B

Figure 5.1: The authentication protocol tls-mac = (tls-tag, tls-chk) is based
on the MAC scheme MAC = (mac, check). The systems seq and seq′ han-
dle sequence numbers; Enc and Enc−1 convert the message-tag pairs for the
message space of −⊕�• and −�n�•.

5.2.1 Construction Based on the XOR-Malleable Channel

The protocol tls-mac guarantees that if the message output at the B-interface
of the confidential channel is different from all messages input at the A-
interface before, then it will either be rejected or results in the breach of
the MAC security. The proof of the construction which is based on the XOR-
malleable channel is simple because every modification of the transmitted
message necessarily results in a different output. Hence, we use the simula-
tor σtls-mac that works as follows.

• On input the i-th message length `i ∈ N at the inside interface, output a
uniformly random (`i+160)-bit string ci ∈R {0, 1}(`i+160) at the outside
interface.

1TLS additionally allows the padding to extend the message by further blocks, although this
is not widely implemented.

180 CHAPTER 5. THE TLS RECORD LAYER

• On input the j-th message c̃j at the outside interface, if c̃j 6= cj (or if cj
is not yet defined), then ignore all further messages input at the outside
interface. Otherwise, input � at the inside interface.

The validity of the construction then follows directly from the security of the
MAC scheme.

Theorem 5.3. Let tls-mac = (tls-tag, tls-chk) be the above described authenti-
cation protocol based on a MAC scheme MAC = (mac, check). Then, tls-mac
constructs from −⊕�• and •= =• the secure channel •−�• relative to the simu-
lator σtls-mac. More formally,(

k-bit•= =•,−⊕�•
)

p tls-mac,σtls-mac,ε
==========⇒ •−�•,

where the symbols refer to sequences
q msgs

−⊕�•,
q msgs

•−�•, and εq = JGSUF-CMA
1 (MAC)K◦

(·Cmac) in q ∈
{

0, . . . , 264 − 1
}

, where the reduction converter Cmac is described
in the proof.

Proof. The availability condition means that

tls-tagAtls-chkB
(

k-bit•= =•⊥,
q msgs

−⊕�•⊥
)
≡

q msgs

•−�•⊥,

for all q ∈
{

0, . . . , 264 − 1
}

. This follows immediately because tls-tag and
tls-chk compute the MAC based on the same messages and keys, and hence the
verification succeeds. Moreover, the MBO becomes 1 upon the same inputs in
both cases.

The security condition means that

r(
tls-tagAtls-chkB

(
k-bit•= =•,

q msgs

−⊕�•
) ∣∣∣ σtls-mac

E
q msgs

•−�•
)z

≤ JGSUF-CMA
1 (MAC)K ◦ (·Cmac),

for all q ∈
{

0, . . . , 264 − 1
}

. We use the notation

Rq := tls-tagAtls-chkB
(

k-bit•= =•,
q msgs

−⊕�•
)

and Sq := σtls-mac
E

q msgs

•−�•.

The setting considered in this proof is depicted in Figure 5.1. We define an
MBO that captures that a MAC is accepted although the ciphertext was not
forwarded unmodified, i.e., E.i! 6= E.i? but B.i! 6= �. Denoting this MBO
as A, we have R̂q |≡ Sq, since the outputs at the E-interface are distributed
identically (uniformly random bit strings of the same length) and B.i! = A.i?
whenever the MBO is not set.

5.2. PADDING AND AUTHENTICATION 181

The reduction Cmac, upon an input m at A.i? outputs a uniformly random
string ci ∈ {0, 1}|m|+160 at E.i!. On input a value E.i? 6= E.i! at the E-
sub-interface, the reduction converter Cmac queries tag(macEnc(mi, i − 1))
at GSUF-CMA

1 (MAC), computes the pair (m′, t′) similarly to −⊕�•, and queries
vrf (macEnc(m′, i− 1), t) at GSUF-CMA

1 (MAC). We first observe that

Rq

g
≡ CmacG

SUF-CMA
1 (MAC).

By the definition of the converter tls-chk, the MBO A is provoked only if the
game CmacG

SUF-CMA
1 (MAC) is won. This concludes the proof.

Our bound is different from the one proven by Krawczyk [Kra01] since
we consider the one-time pad with a perfectly random key stream, we do not
exhibit the quadratic “collision” term in the bound.

5.2.2 Construction Based on the Block-Malleable Channel

The authentication protocol used in TLS constructs a secure channel also from
a block-malleable channel. The proof of this construction is slightly more
complicated than for the case of the XOR-malleable channel, because a (non-
trivial) modification at the channel can still result in the same plaintext mes-
sage. The simulator σ′tls-mac for this case initially samples a key k←$K and
then proceeds as follows.

• On input the i-th message length `i ∈ N at the inside interface, output a
random (

⌈
`i
n

⌉
n + 160)-bit string ci with the same distribution as given

by −�n�• at the outside interface.

• On input the j-th message c̃j at the outside interface, if c̃j 6= cj (or if cj
is not yet defined), then ignore all further messages input at the outside
interface. Otherwise, input � at the inside interface.

The validity of the construction then follows directly from the security of
the MAC scheme.

Theorem 5.4. Let tls-mac = (tls-tag, tls-chk) be the above described authenti-
cation protocol based on a MAC scheme MAC = (mac, check). Then, tls-mac
constructs from −�n�• and •= =• the secure channel •−�•. More formally, for
the simulator σ′tls-mac,

(•= =•,−�n�•) p
tls-mac,σ′tls-mac,ε==========⇒ •−�•,

where the symbols refer to sequences
q msgs

−�n�• and
q msgs

•−�• in q ∈
{

0, . . . , 264 − 1
}

,
and performance measures εq =

q
GSUF-CMA
q (MAC)

y
◦ (·Cmac)− (q`/n)22−n, and

the reduction Cmac is described in the proof.

182 CHAPTER 5. THE TLS RECORD LAYER

As discussed in Section 5.1, the channel −�n�• is not a monotone sys-
tem. The cases where this channel deviates from the monotone behavior
can be captured by an MBO, and this MBO becomes 1 with probability at
most (q`/n)22−n. This slightly reduces the performance of the reduction and
is the reason for the exact definition of the performance in the reduction state-
ment.

Proof. The availability condition means that

tls-tagAtls-chkB
(

k-bit•= =•⊥,
q msgs

−�n�•⊥
)
≡

q msgs

•−�•⊥.

This follows immediately because tls-tag and tls-chk compute the MAC based
on the same messages and keys, and hence the verification succeeds. More-
over, the both systems provide output until q messages have been input at
the A-interface.

For the security condition, we have to show

r(
tls-tagAtls-chkB

(
k-bit•= =•,

q msgs

−�n�•
) ∣∣∣ σ′tls-mac

E q msgs

•−�•
)z

≤
q
GSUF-CMA
q (MAC)

y
◦ (·Cmac).

We use the notation

Rq := tls-tagAtls-chkB
(

k-bit•= =•,
q msgs

−�n�•
)

and Sq := σ′tls-mac
E q msgs

•−�•.

The setting considered in this proof is depicted in Figure 5.1. We define an
MBO that captures that a MAC verification succeeds although the ciphertext
was not forwarded unmodified. This can be defined on the system Rq as the
condition “E.i! 6= E.i? but B.i! 6= �.” On the system Sq, this can be de-
fined by adding a “hypothetical” computation of the MAC on input a message
at the A-interface, and by performing the same computations as in −�n�•
and tls-chk to check whether the verification succeeds. (The computation is
purely hypothetical and is only used as a proof technique. All we need is that
the event of a MAC forgery is defined.) Call this MBO A, we have

R̂q

g
≡ Ŝq,

since the outputs at the E-interface are distributed identically (by the defini-
tion of the simulator) and B.i! = A.i? whenever the MBO is not set. All that
remains to be shown is that for all distinguishers

r
R̂q

z
≤

q
GSUF-CMA
q (MAC)

y
◦ (·Cmac),

5.2. PADDING AND AUTHENTICATION 183

for a reduction converter Cmac. This converter, upon input m at A.i?, queries
tag(macEnc(m, i − 1)) at the game GSUF-CMA

q (MAC) and outputs a random

string ci ∈ {0, 1}(d
|m|
n en+160) with the same distribution as in −�n�• at E.i!.

On input E.j?, the reduction behaves as follows.

• If E.j? = E.j!, then output B.j! = A.j?.

• Otherwise, reconstruct the message corresponding to the given cipher-
text E.j? analogously to −�n�•. That is, it is computed similarly to the
CBC-mode decryption, where blocks used previously are treated as cor-
responding to the (first) previous occurrence of the ciphertext block,
and fresh blocks are treated as corresponding to uniformly random
plaintext blocks, parse the resulting plaintext into message m̃ and tag t̃.
Query vrf(

(
macEnc(m̃, j), t̃

)
) with the obtained pair at GSUF-CMA

q (MAC).

Then, as R̂q

g
≡ CmacG

SUF-CMA
q (MAC), the theorem follows from Lemma 2.14.

The bound differs slightly from the one given by Krawczyk [Kra01]. This
is due to using a generic composition and to the more general modeling of the
MAC: In Krawczyk’s analysis, the block length of the cipher and the length of
the MAC must be equal. In contrast, we do not restrict the size of the MAC.

184 CHAPTER 5. THE TLS RECORD LAYER

Chapter 6

Conclusion

We introduced a framework that instantiates the paradigms of abstract and
constructive cryptography of Maurer and Renner and allows to formalize and
prove security statements about protocols in the setting of secure commu-
nication. The framework differs from previous approaches both in terms
of the type of security statement and the underlying formal concepts. We
showed in Chapter 4 how several construction steps can be achieved, per-
forming an analysis of some well-known protocols, comparing the obtained
security definitions to several security notions existing in the literature, and
also discussing a new unilateral key-establishment protocol. In Chapter 5, we
described the TLS record-layer protocol as two modular construction steps
and analyzed them individually. The result verifies the soundness of this part
of the TLS protocol in version 1.2. The goal of this chapter is to interpret the
results of the thesis in a broader context.

Provable security and the constructive paradigm. Most widely deployed
security protocols have not been designed with provable security in mind. The
usefulness of provable security, at least in its current form, is even questioned
not only by practitioners, but also by cryptography researchers [KM07]. One
of the main criticisms can be exemplified using a line of works on ssh. The
original ssh protocol was invented in 1995. Early versions of the protocol
were not secure, but after several fixes, a version of the protocol could actually
be (modified to become and) shown to be secure, which was proven by Bellare
et al. [BKN04]. Somewhat surprisingly, Albrecht et al. [APW09] later showed
a practical attack on the proven parts of the protocol. What had happened?

On a high level, the original analysis of Bellare et al. [BKN04] followed
the “standard” attack-based security definitions and allowed the adversary

185

186 CHAPTER 6. CONCLUSION

to submit ciphertexts to a “decryption oracle” which would then decrypt the
given ciphertext using the secret key and, if the decryption succeeded, provide
the adversary with the plaintext. In the realistic ssh protocol, however, an
attacker can fragment ciphertexts and deliver them to the receiver in small
chunks. The receiver decrypts the message once it recognizes that a complete
“packet” has arrived. This mechanism allowed Albrecht et al. [APW09] to
mount their attack: by using that the receiver would notice the end of the
packet adaptively while processing the packet, they were able to obtain the
information of when the receiver considered the packet to be complete, and
this information leaks certain information about encrypted messages. In later
work, Paterson and Watson [PW10] extended the provable security treatment
of Bellare et al. [BKN04] to also cover this type of attack.

A somewhat related problem occurs in many practical security protocols
(most of which were not designed by cryptographers), where cryptographic
primitives and schemes are used in ways for which they were not specified
and proven. The most impressive example in this respect is TLS, where, for
instance, during the handshake neither of the key-establishment modes is
chosen-ciphertext secure but the messages are sent without explicit authen-
tication, the PRF for extracting from the key material is keyed with a value
which is not guaranteed to be distributed uniformly, the keys generated dur-
ing the key establishment are used for two different purposes, and the (not
chosen-ciphertext secure) symmetric encryption schemes are used without
authenticating the ciphertexts. Somewhat surprisingly, despite its ill-designed
structure and after various vulnerabilities have been patched over time, the
recent versions of the TLS protocol appear to achieve some reasonable level
of security [JKSS12, KPW13, BFK+13a, BFK+13b, KMO+14]. Other examples
include, for instance, ssh and Kerberos in their use of the symmetric encryp-
tion, or IPsec in using a PRF which is keyed with a publicly known nonce.

Several problems such as the implicit assumption that encryption also pro-
tects the integrity of messages and a wrong assignment of initialization vec-
tors have occurred in various applications. One line of work in cryptography
focuses on building definitions and schemes that are “harder to abuse:” au-
thenticated encryption that protects both confidentiality and integrity of mes-
sages (e.g., [Rog02, RBB03]), nonce-based encryption in which the require-
ment on the IV to be uniformly random is replaced by the weaker requirement
on the nonce to be unique [Rog04], and even misuse-resistant authenticated
encryption [RS07] in which messages are protected as long as the pair of
nonce and message is unique.

Both above problems hint to the problem that the guarantees implied by
“standard” attack-based security proofs are not comprehensible from the se-
curity statements—at least not to practitioners making use of the schemes. In

187

other words, it was not clear what a scheme or protocol achieved when ap-
plied in a given scenario. This, however, appears to be a crucial requirement
for provable security to be useful in practice: a security definition must specify
the assumptions that the protocol makes in a way such that practitioners us-
ing the protocol can understand and verify whether the assumptions are met
in their applications, as well as formalize the guarantees in a way that allows
to verify whether these guarantees are sufficient for the intended application.

Constructive cryptography establishes a new approach to solving the de-
scribed problems. One particular goal of constructive statements is that the
semantics of security statements be clear by making all assumptions of a cryp-
tographic scheme explicit in the assumed resources, and the guarantees in the
constructed resource: if the encryption scheme does not protect the integrity
of messages, then the construction will usually be stated as assuming an au-
thenticated channel. Hence, this construction step can only be used in appli-
cations that guarantee that the ciphertext is not modified during the trans-
mission. Ultimately, randomness should also be made explicit as a resource
(by restricting to deterministic converters); in that case, the availability of a
randomness for an IV and its assumed distribution would also appear as a
resource in a construction statement. The hope is that if the assumptions of
a scheme appear explicitly in the security statements and are comprehensible
without understanding the details of the security model, then the abuse of
schemes will decrease.

A consequent application of the constructive cryptography paradigm leads
to proving modular construction steps in which each individual protocol is
simple—consisting of a single method or scheme—and proven in isolation.
This means that one ultimately builds a “library” of such construction steps,
and complex protocols can be built by simply combining steps from the library.
A protocol designer need not understand the exact security model in detail,
because all steps that match syntactically can be composed. The composition
theorem guarantees an overall protocol built from multiple construction steps
is secure. The advantage of protocols built according to this approach is that
they have a modular design and directly come with a security proof. We
believe that the application of this paradigm in the design of future security
protocols will help avoid practical vulnerabilities.

Abstraction and formalization. As most protocols or schemes considered
in cryptography are discrete systems, security definitions for such protocols
are stated with respect to a particular formal model of discrete systems. Var-
ious models of discrete systems appear in the cryptographic literature, most
of these models are based on concepts such as Turing machines or automata.
The main requirements for such a formal framework is that it has sufficient

188 CHAPTER 6. CONCLUSION

expressiveness to capture the considered objects, that it is a sound abstraction
of reality, and that it allows for comprehensible and precise proofs.

Most cryptographic definitions are phrased in terms of Turing machines;
the motivation is that as most cryptographic schemes are only computation-
ally secure, a model of computation is required to formulate and prove the se-
curity statements. Unfortunately, a Turing machine itself is a complex object,
and the exact (mathematical) definition and properties of ITMs are hardly
used, even in the fundamental theorems concerning the model. Indeed, it
appears hardly tractable (and certainly not beneficial) to perform a full proof
of a cryptographic protocol at such a low level; this level of detail is neither
helpful nor necessary in the proofs, and ITMs are simply not the suitable ab-
straction. (This is also indicated in some of the works, such as by Hofheinz
and Shoup [HS11].) Furthermore, the pseudo-code descriptions used to de-
scribe the Turing machines usually do not uniquely specify a Turing machine
as a formal object, while they do, in contrast, usually specify a unique discrete
system.

The top-down abstraction approach of Maurer and Renner [MR11] sug-
gests to start from the opposite direction. Instead of beginning with a low-
level model such as Turing machines and subsequently building more complex
structures, one starts axiomatically from the high-level statements one is in-
terested in and subsequently refines the concepts until the desired statements
can be captured. In this spirit, we described discrete systems as an instanti-
ation of the abstract system concept. The type of discrete systems captures
exactly the properties required to prove statements about the behavior of sys-
tems and abstracts from, for example, concrete models of computation. The
security of protocols can still be proved based on computational assumptions
by showing explicit reductions that, intuitively, translate any attack on the
cryptographic scheme into a solution for the underlying computational prob-
lem. These reductions are independent of a particular computational model
and apply to any such model which satisfies the axioms of the system alge-
bra. Following this approach allows us to make precise statements also about
computationally secure protocol, without actually specifying the objects in a
particular computational model.

The type of discrete system we describe in this thesis can be seen as a
probabilistic variant of the type described by Kahn [Kah74] and restricts the
type of behavior that can be captured; on a high level, it means that the be-
havior of a system may not depend on the order in which several messages
arrive, only on their values. While most statements in this thesis have been
made using only this type of system, some protocols such as Bracha’s broad-
cast [Bra84] are inherently not of this type, and formalizing such a protocol
requires a generalization of the discrete systems model. Due to the Brock-

189

Ackermann anomaly [BA83, Bro83], however, such a generalization is not
straightforward; the obtained system algebra will not be connection-order in-
variant. This problem can be resolved by considering an algebra of sets of
discrete systems, where each system in the set corresponds to one particular
order in which the connections are applied—this can be seen as a type of
scheduling. An algebra based on these sets still does not allow directly for
modularization, but an approximating structure on the sets—roughly corre-
sponding to the technique of Micciancio and Tessaro [MT13]—can be used to
obtain modularity. We pursue this approach in ongoing work to define an ex-
tension of the model described in this thesis; the monotone discrete systems
can then be seen as a “sub-algebra” of the more general type, allowing for
simpler proofs.

Note that the model of discrete systems does not capture a notion of real
time; that is, if a scheme leaks information because a computation for differ-
ent inputs requires a different amount of time, the distinguisher in this model
will not be able to observe the difference. This restriction applies to all cur-
rent general cryptographic frameworks and can be resolved by modeling time
explicitly on a lower abstraction layer.

Authentication and encryption. We have specified several natural types
of communication channels and described several schemes and the construc-
tions they achieve. A message authentication protocol based on a URF (which
can be constructed by a PRF from a shared secret key) constructs an authen-
ticated channel, and symmetric encryption schemes such as the one-time pad
(this extends to stream ciphers because they construct a random key stream
from a shared secret key) or CBC-mode encryption based on a URP (which
can be constructed by a block cipher from a shared secret key) construct a
fully secure channel in the authenticated setting. The natural composition of
these two types of schemes then leads to the Encrypt-then-Authenticate trans-
formation, the security follows immediately by the composition theorem.

We have also analyzed the Authenticate-then-Encrypt transformation by
analyzing what encryption schemes achieve if the ciphertext is transmitted
via an insecure channel; in the particular case of one-time pad encryption
(again, this extends to stream ciphers) this is a confidential channel that al-
lows the attacker to modify transmitted messages by applying an XOR mask
for the plaintext message. We have then shown that a strongly unforgeable
MAC constructs from this channel and a shared secret key a fully secure chan-
nel; hence, the Authenticate-then-Encrypt transformation is in principle also
sound. In comparison with Encrypt-then-Authenticate, however, this analysis
is less generic: while all authentication schemes construct the same authen-
ticated channel from which the encryption scheme can start, the confidential

190 CHAPTER 6. CONCLUSION

channels inherently depend on the exact encryption scheme that is employed,
and hence the analysis for the MAC scheme has to be performed for each such
channel independently.

The results shown in this thesis support the recommendation that Encrypt-
then-Authenticate should be used for the composition of MACs and symmetric
encryption schemes (see also, e.g., [Rog95, BN00]).

Relation to game-based notions. We have also shown how several notions
described in the literature relate to constructions. In particular, a protocol
based on a weakly unforgeable (WUF-CMA) MAC constructs an authenticated
channel from an insecure channel and a shared secret key. A protocol based
on an encryption scheme constructs a secure channel from an authenticated
channel and a key if and only if the underlying scheme satisfies the IND-CPA
property. Also, such a protocol constructs a confidential and non-malleable
channel from an insecure channel and a key if the scheme is IND-CCA, and
a secure channel from an insecure one and a key if the scheme satisfies both
IND-CPA and INT-CTXT. Additionally, we have shown that an authentication
protocol based on an existentially unforgeable (EUF-CMA) signature scheme
constructs a multiple-use authenticated channel from a single-use authenti-
cated channel. (The construction is phrased in a scenario with multiple re-
ceivers, but of course also applies to the three-party setting.)

We view these statements as confirming the soundness of the respective
game-based notions. Note that for cryptographic schemes in the “traditional”
sense, it is not a priori clear how the composition of multiple schemes should
be defined; this might be the reason for “obscure” combinations of schemes
such as Authenticate-and-Encrypt like in ssh. Converters, in contrast, assign
all inputs and outputs explicitly to the input and output interfaces, and the
composition of two converters fully describes the combined converter that
one obtains.

Some games such as the original formulation of INT-PTXT do not have a
constructive interpretation because they inherently do not allow for compos-
able statements, this has been discussed by Maurer et al. [MRT12]. Other
games, such as NM-CPA or IND-CCA1, appear to correspond to constructions
between unnatural resources [CMT13a]. These results question the justifica-
tion for the corresponding game-based notions, but do not exclude the use-
fulness in specific applications.

Anonymity. In Section 4.6, we have shown how statements about anony-
mous communication can be phrased constructively, providing the (to the
best of our knowledge) first treatment of anonymity within a composable se-
curity framework. The statement makes explicit in which sense anonymity

191

can be achieved by specifying a set of potential receivers relative to which the
anonymity holds. We have then shown that a public-key encryption scheme
that fulfills the properties introduced by Bellare et al. [BBDP01] and Abdalla
et al. [ABN10] constructs a receiver-anonymous confidential channel from a
receiver-anonymous insecure channel and authenticated channels from the
receivers to the sender. In particular, we showed that confidentiality, key
privacy, and weak robustness are indeed sufficient for such a scheme to be
useful. Our results do not only support the trust in existing schemes and
constructions; they also show that the simpler and more efficient weakly
robust schemes (see [ABN10]) can be used safely. The same approach to
defining anonymity has been followed in the subsequent work of Alwen et
al. [AHM+14]. An interesting question for future work is whether the guar-
antees achieved by overlay networks such as the TOR protocol can also be
explicitly phrased constructively following this approach.

Unilateral key establishment. We have presented a simple and efficient
protocol for unilateral key establishment, which can be viewed as a modular-
ization and generalization of the protocol proposed by Shoup [Sho99]. The
setting with unilateral authentication occurs naturally in the client-server sce-
nario that is present in most Internet protocols, where only the server has a
certified public key. Despite the practical importance of this scenario (if the
client does not have a certified public key, a mutually authenticated key can-
not be achieved), the majority of models and protocols in the cryptographic
literature focuses on the mutual-authentication case, where both the client
and the server have certified public keys. Moreover, all previous security def-
initions that do apply to this case come (a priori) without composition guar-
antees.

The protocol we describe is built around a key-encapsulation mechanism
that is only CPA-secure, while previous such constructions generally required
the KEM to be CCA-secure (see, e.g., [MSW08, CMT13a]). This is achieved
by using the KEM in the opposite direction: the public key is generated by the
client and transmitted over an insecure channel, and the ciphertext encapsu-
lating the key is sent authentically. Appending the public key to the ciphertext
sent over the authenticated connection allows the client to check that it was
not modified during the transmission. Indeed, it appears beneficial to replace
the key-establishment step in existing protocols such as TLS by simpler and
more efficient protocols based on the idea presented in Section 4.7.

The guarantee formalized by the unilateral key is indeed useful: mutual
authentication can be achieved using a (pre-shared low-entropy) password.
As shown by Maurer et al. [MTC13], one can alternatively apply, e.g., authen-
ticated encryption to obtain a multiple-message channel which offers “partner

192 CHAPTER 6. CONCLUSION

invariance:” either the authenticated party (here B) communicates consis-
tently with A, or B communicates consistently with E, and send the password
via this channel.

We also showed how the authenticated channel assumed by the construc-
tion can itself be constructed from realistic assumptions (such as a PKI) by
a protocol based on nonces and signatures. This assumption is modeled as
a single-use authenticated channel / �−• that allows the server to transmit a
single message (the signature verification key) to all clients authentically is
available. This channel can itself be constructed in several ways, such as by
pre-installing the verification key at all clients (this is the assumption used in
previous models) or by use of a public-key infrastructure with a pre-installed
public key of a certification authority at the clients (this is the usual imple-
mentation in practice); our protocol is independent of how this channel is
constructed. The analysis of global public-key infrastructures in general set-
tings, i.e., with respect to corruptions, will require a generalization of the
described constructions in a similar sense as done by Canetti et al. [CSV14]
in the context of the UC framework. This, as a topic of independent interest,
will be discussed in future work.

SSL/TLS record layer. The SSL/TLS protocol has received considerable at-
tention in the cryptographic literature recently because of its importance in
practice. Unfortunately, the protocol was not designed with provable se-
curity in mind, and multiple severe vulnerabilities have been detected and
patched in recent years. Several of these vulnerabilities also affected the
record-layer protocol, such as an incorrect chaining in CBC mode or an at-
tack that became possible due to verbose error messages. The proof of the
TLS record-layer protocol presented in Chapter 5 is based on the first proof
of the Authenticate-then-Encrypt transformation that was applicable to the
parameters in TLS [MT10] (the previous work by Krawczyk [Kra01] analyzed
similar schemes, but the parameters were chosen such that they did not apply
to TLS, and padding was ignored).

While the proof (and also the subsequent work by Paterson et al. [PRS11])
shows that the specification of the record layer in TLS version 1.2 [DR08]
does not exhibit further vulnerabilities, it still seems beneficial to replace the
Authenticate-then-Encrypt transformation by Encrypt-then-Authenticate (or
authenticated encryption) as AtE is inherently susceptible to implementation
flaws and timing attacks. While the Binary Packet Protocol (BPP) in ssh, based
on Encrypt-and-Authenticate, has also suffered from vulnerabilities [APW09],
the design of the Encapsulating Security Payload (ESP) in IPsec demonstrates
that an EtA approach indeed leads to a sound protocol design, as shown by
Jost [Jos14].

Bibliography

[Aba02] Mart́ın Abadi. Private authentication. In Roger Dingledine
and Paul Syverson, editors, Privacy Enhancing Technologies, vol-
ume 2482 of Lecture Notes in Computer Science, pages 27–40.
Springer, 2002.

[ABN10] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust en-
cryption. In Daniele Micciancio, editor, Theory of Cryptography,
volume 5978 of Lecture Notes in Computer Science, pages 480–
497. Springer, 2010.

[ABP+13] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson,
Bertram Poettering, and Jacob C. N. Schuldt. On the security of
RC4 in TLS and WPA. In USENIX Security Symposium, 2013.

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security
of joint signature and encryption. In Lars R. Knudsen, editor,
Advances in Cryptology — EUROCRYPT 2002, volume 2332 of
Lecture Notes in Computer Science, pages 83–107. Springer, 2002.

[AF04] Mart́ın Abadi and Cédric Fournet. Private authentication. Theor.
Comput. Sci., 322(3):427–476, 2004.

[AHM+14] Joël Alwen, Martin Hirt, Ueli Maurer, Arpita Patra, and
Pavel Raykov. Anonymous authentication with shared secrets.
Cryptology ePrint Archive, Report 2014/073, February 2014.
http://eprint.iacr.org/2014/073.

[AP12] Nadhem J. AlFardan and Kenneth G. Paterson. Plaintext-recovery
attacks against datagram TLS. In Network and Distributed System
Security Symposium (NDSS’12), 2012.

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen:
Breaking the TLS and DTLS record protocols. In IEEE Symposium
on Security and Privacy, 2013.

193

194 BIBLIOGRAPHY

[APW09] Martin A. Albrecht, Kenneth G. Paterson, and Gaven J. Watson.
Plaintext recorvery attacks against SSH. In IEEE Symposium on
Security and Privacy, pages 16–26. IEEE, 2009.

[BA83] J. Dean Brock and William B. Ackermann. Scenarios: A model of
non-determinate computation. In Formalization of Programming
Concepts, 1983.

[Bar04] Gregory V. Bard. Vulnerability of SSL to chosen-plaintext attack.
Cryptology ePrint Archive: Report 2004/111, May 2004.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David
Pointcheval. Key-privacy in public-key encryption. In Colin Boyd,
editor, Advances in Cryptology — Asiacrypt 2001, volume 2248
of Lecture Notes in Computer Science, pages 566–582. Springer,
2001.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash
functions for message authentication. In Neal Koblitz, editor,
Advances in Cryptology — CRYPTO 1996, volume 1109 of Lecture
Notes in Computer Science, pages 1–15. Springer, 1996.

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular ap-
proach to the design and analysis of authentication and key ex-
change protocols. In Proceedings of the 30th Annual ACM Sympo-
sium on Theory of Computing, pages 419–428. ACM, 1998.

[BD03] Amos Beimel and Shlomi Dolev. Buses for anonymous message
delivery. Journal of Cryptology, 16(1):25–39, 2003.

[BDJR97] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A
concrete security treatment of symmetric encryption. In Proceed-
ings of the 38th Symposium on Foundations of Computer Science,
pages 394–403. IEEE, 1997.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rog-
away. Relations among notions of security for public-key encryp-
tion schemes. In Hugo Krawczyk, editor, Advances in Cryptology
— CRYPTO 1998, volume 1462 of Lecture Notes in Computer Sci-
ence, pages 26–45. Springer, 1998.

[Bea91] Donald Beaver. Foundations of secure interactive computing.
In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO
1991, volume 576 of Lecture Notes in Computer Science, pages
377–391. IACR, Springer, 1991.

BIBLIOGRAPHY 195

[BFCZ12] Karthikeyan Bhargavan, Cédric Fournet, Ricardo Corin, and Eu-
gen Zǎlinescu. Verified cryptographic implementations for TLS.
In ACM Transactions on Information and System Security (TIS-
SEC’12), volume 15(1): 3, 2012.

[BFK+13a] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Al-
fredo Pironti, and Pierre-Yves Strub. Implementing TLS with ver-
ified cryptopgrahic security. In IEEE Symposium on Security and
Privacy, pages 445–469, 2013.

[BFK+13b] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Al-
fredo Pironti, Pierre-Yves Strub, and Santiago Zanella-Béguelin.
Proving the TLS handshake secure (as it is). Technical report,
2013.

[BFS+13] Christina Brzuska, Marc Fischlin, Nigel Smart, Bogdan Warin-
schi, and Steve Williams. Less is more: Relaxed yet composable
security notions for key exchange. International Journal of Infor-
mation Security, 12(4):267–297, 2013.

[BFWW11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and
Stephen C. Williams. Composability of Bellare-Rogaway key ex-
change protocols. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, pages 51–62. ACM,
ACM Press, 2011.

[BGM04] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The power
of verification queries in message authentication and authenti-
cated encryption. Cryptology ePrint Archive, Report 2004/309,
November 2004.

[BJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key ex-
change protocols and their security analysis. In Proceedings of
the 6th IMA International Conference on Cryptography and Cod-
ing, 1997.

[BKN04] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre.
Authenticated encryption in SSH: Provably fixing the SSH binary
packet protocol. ACM Transactions on Information and System
Security (TISSEC), 7(2):206–241, 2004.

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the
cipher block chaining authentication code. Journal of Computer
and System Sciences, 61(3):362–399, December 2000.

196 BIBLIOGRAPHY

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against proto-
cols based on the RSA encryption standard PKCS #1. In Hugo
Krawczyk, editor, Advances in Cryptology — CRYPTO’98, volume
1462 of Lecture Notes in Computer Sciece, pages 1–12. Springer,
1998.

[BM98] Simon Blake-Wilson and Alfred Menezes. Entity authentication
and key transport protocols employing asymmetric techniques.
In Stafford Tavares and Henk Meijer, editors, Selected Areas in
Cryptography, volume 1556 of Lecture Notes in Computer Science.
Springer, 1998.

[BM03] Colin Boyd and Anish Mathuria. Protocols for Authentication
and Key Establishment. Information Security and Cryptography.
Springer, 2003.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated en-
cryption: Relations among notions and analysis of the generic
composition paradigm. In Tatsuaki Okamoto, editor, Advances in
Cryptology — ASIACRYPT 2000, volume 1976 of Lecture Notes in
Computer Science, pages 531–545. Springer, 2000. Journal ver-
sion in [BN08].

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated en-
cryption: Relations among notions and analysis of the generic
composition paradigm. Journal of Cryptology, 21(4):469–491,
October 2008.

[BPW07] Michael Backes, Birgit Pfitzmann, and Michael Waidner. The
reactive simulatability (RSIM) framework for asynchronous sys-
tems. Information and Computation, 205(12):1685–1720, De-
cember 2007.

[BR93] Mihir Bellare and Phillip Rogaway. Entity authentication and key
distribution. In Douglas R. Stinson, editor, Advances in Cryptol-
ogy — CRYPTO 1993, volume 773 of Lecture Notes in Computer
Science, pages 232–249. Springer, 1993.

[BR00] Mihir Bellare and Phillip Rogaway. Encode-then-encipher en-
cryption: How to exploit nonces or redundancy in plaintexts for
efficient cryptography. In Tatsuaki Okamoto, editor, Advances in
Cryptology — ASIACRYPT 2000, volume 1976 of Lecture Notes in
Computer Science, pages 317–330. Springer, 2000.

BIBLIOGRAPHY 197

[BR06] Mihir Bellare and Phillip Rogaway. Code-based game-playing
proofs and the security of triple encryption. In Serge Vaude-
nay, editor, Advances in Cryptology — EUROCRYPT 2006, vol-
ume 4004 of Lecture Notes in Computer Science, pages 409–426.
Springer, 2006.

[Bra84] Gabriel Bracha. An asynchronous [(n− 1)/3]-resilient consensus
protocol. In ACM Symposium on Principles of Distributed Comput-
ing, pages 154–162, 1984.

[Bro83] J. Dean Brock. A Formal Model of Non-determinate Dataflow
Computation. PhD thesis, Massachusetts Institute of Technology,
1983.

[Can01] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science, pages 136–145.
IEEE, 2001. Extended version in [Can13].

[Can13] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. Cryptology ePrint Archive, Report
2000/067, July 2013. Original version from December 2000.

[CCK+06] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy
Lynch, Olivier Pereira, and Roberto Segala. Task-structured prob-
abilistic I/O automata. In Proceedings of the 8th International
Workshop on Discrete Event Systems, pages 207–214. IEEE, 2006.

[CCLP07] Ran Canetti, Ling Cheung, Nancy Lynch, and Oliver Pereira. On
the role of scheduling in simulation-based security. 7th Interna-
tional Workshop on Issues in the Theory of Security, March 2007.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange pro-
tocols and their use for building secure channels. In Birgit Pfitz-
mann, editor, Advances in Cryptology — EUROCRYPT 2001, vol-
ume 2045 of Lecture Notes in Computer Science, pages 453–474.
Springer, 2001.

[CK02a] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s
signature-based key-exchange protocol. In Moti Yung, editor,
Advances in Cryptology — CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 27–52. Springer, 2002.

198 BIBLIOGRAPHY

[CK02b] Ran Canetti and Hugo Krawczyk. Universally composable no-
tions of key exchange and secure channels. In Lars R. Knud-
sen, editor, Advances in Cryptology — EUROCRYPT 2002, vol-
ume 3027 of Lecture Notes in Computer Science, pages 337–351.
Springer, 2002.

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing
chosen-ciphertext security. In Dan Boneh, editor, Advances in
Cryptology — CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 565–582. Springer, 2003.

[CMT13a] Sandro Coretti, Ueli Maurer, and Björn Tackmann. Constructing
confidential channels from authenticated channels—Public-key
encryption revisited. In Kazue Sako and Palash Sarkar, editors,
Advances in Cryptology — ASIACRYPT 2013, volume 8269 of Lec-
ture Notes in Computer Science, pages 134–153. Springer, 2013.

[CMT13b] Sandro Coretti, Ueli Maurer, and Björn Tackmann. A Constructive
Perspective on Key Encapsulation, volume 8260 of Lecture Notes
in Computer Science, chapter “Security and Privacy”, pages 226–
239. Springer, August 2013.

[CSV14] Ran Canetti, Daniel Shahaf, and Margarita Vald. Composable
authentication with global PKI. Cryptology ePrint Archive Report
2014/432, June 2014. http://eprint.iacr.org/2014/432.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable
cryptography. SIAM Journal on Computing, 30(2):391–437,
2000.

[DF13] Yevgeniy Dodis and Dario Fiore. Interactive encryption, mes-
sage authentication, and anonymous key exchange. Cryp-
tology ePrint Archive, Report 2013/817, December 2013.
http://eprint.iacr.org/2013/817.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:
The second-generation onion router. In Proceedings of the 13th
USENIX Security Symposium, August 2004.

[DR08] Tim Dierks and Eric Rescorla. The transport layer security (TLS)
protocol version 1.2. RFC 5246, August 2008.

[DR11] Thai Duong and Juliano Rizzo. Here come the XOR ninjas. In
Ekoparty, 2011.

BIBLIOGRAPHY 199

[FHM+12] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärt-
ner, Bernd Freisleben, and Matthew Smith. Why Eve and Mal-
lory love Android: An analysis of Android SSL (in)security. In
Proceedings of the ACM Conference on Computer and Communica-
tions Security (ACM CCS’12), pages 50–61, 2012.

[Fis07] Marc Fischlin. Anonymous signatures made easy. In Tatsuaki
Okamoto and Xiaoyun Wang, editors, Public-Key Cryptography,
volume 4450 of Lecture Notes in Computer Science, pages 31–42.
Springer, 2007.

[FLPQ13] Pooya Farshim, Benôıt Libert, Kenneth G. Paterson, and Eliza-
beth A. Quaglia. Robust encryption, revisited. In Kaoru Kuro-
sawa and Goichiro Hanaoka, editors, Public-Key Cryptography,
volume 7778 of Lecture Notes in Computer Science, pages 352–
368. Springer, 2013.

[FS03] Niels Ferguson and Bruce Schneier. Practical Cryptography. Wi-
ley, 2003.

[GDK02] Virgil D. Gligor, Pompiliu Donescu, and Jonathan Katz. On mes-
sage integrity in symmetric encryption. February 2002.

[GIJ+12] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai,
Dan Boneh, and Vitaly Shmatikov. The most dangerous code in
the world: Validating SSL certificates in non-browser software.
In Proceedings of the ACM Conference on Computer and Commu-
nications Security (ACM CCS’12), pages 38–49, 2012.

[GKS13] Florian Giesen, Florian Kohlar, and Douglas Stebila. On the se-
curity of tls renegotiation. In ACM Conference on Computer and
Communications Security, pages 387–398, 2013.

[GL90] Shafi Goldwasser and Leonid Levin. Fair computation of gen-
eral functions in presence of immoral majority. In Alfred J.
Menezes and Scott A. Vanstone, editors, Advances in Cryptology
— CRYPTO ’90, volume 537 of Lecture Notes in Computer Science,
pages 77–93. Springer, 1990.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption.
Journal of Computer and System Sciences, 28(2):270–299, 1984.
Earlier version in STOC 1982.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems. In Proceedings of

200 BIBLIOGRAPHY

the 17th Annual ACM Symposium on Theory of Computing, pages
281–304. ACM Press, 1985.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game—a completeness theorem for protocols with
honest majority. In Proceedings of the 19th Annual ACM Sympo-
sium on Theory of Computing, pages 218–229. ACM, 1987.

[GSU13] Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu. Anonymity
and one-way authentication in key exchange protocol. Designs,
Codes and Cryptography, 67(2):245–269, May 2013.

[Hic95] Kipp E.B. Hickman. The SSL protocol. February 1995.

[HK99] Shai Halevi and Hugo Krawczyk. Public-key cryptography and
password protocols. ACM Transactions on Information and System
Security (TISSEC), 2(3):230–268, August 1999.

[HM08] Alejandro Hevia and Daniele Micciancio. An indistinguishability-
based characterization of anonymous channels. In Nikita Borisov
and Ian Goldberg, editors, Privacy Enhancing Technologies, vol-
ume 5134 of Lecture Notes in Computer Science, pages 24–43.
Springer, 2008.

[HMS+13] Thomas Holenstein, Ueli Maurer, Angelika Steger, Emo Welzl,
and Peter Widmayer. Algorithms, probability, and computing.
Lecture Notes, ETH Zürich, September 2013.

[HMU05] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh.
Polynomial runtime in security definitions. In 18th IEEE Work-
shop on Computer Security Foundations, pages 156–169. IEEE,
2005.

[HS11] Dennis Hofheinz and Victor Shoup. GNUC: A new universal
composability framework. Cryptology ePrint Archive, Report
2011/303, June 2011.

[HZ10] Martin Hirt and Vassilis Zikas. Adaptively secure broadcast.
In Henry Gilbert, editor, Advances in Cryptology — EUROCRYPT
2010, volume 6110 of Lecture Notes in Computer Science, pages
466–485. Springer, 2010.

[IKOS06] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Cryptography from anonymity. In Proceedings of the 47th Sympo-
sium on Foundations of Computer Science, pages 239–248, 2006.

BIBLIOGRAPHY 201

[Iwa06] Tetsu Iwata. New blockcipher modes of operation with beyond
the birthday bound security. In Matthew Robshaw, editor, Fast
Software Encryption, volume 4047 of Lecture Notes in Computer
Science, pages 310–327. Springer, 2006.

[JK02] Jakob Jonsson and Burton S. Kaliski Jr. On the security of RSA
encryption in TLS. In Moti Yung, editor, Advances in Cryptology
— CRYPTO 2002, volume 2442 of Lecture Notes in Computer Sci-
ence, pages 127–142. Springer, 2002.

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On
the security of TLS-DHE in the standard model. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
— CRYPTO, volume 7417 of Lecture Notes in Computer Science,
pages 273–293. Springer, 2012.

[Jos14] Daniel Jost. A constructive analysis of IPsec. Master’s thesis, ETH
Zurich, April 2014.

[Kah74] Gilles Kahn. The semantics of a simple language for parallel pro-
gramming. In Jack L. Rosenfeld, editor, Information Processing
74, pages 471–475. North-Holland, 1974.

[Kel02] John Kelsey. Compression and information leakage of plain-
text. In Joan Daemen and Vincent Rijmen, editors, Fast Software
Encryption, volume 2365 of Lecture Notes in Computer Sciencec,
pages 263–276. Springer, 2002.

[KM07] Neal Koblitz and Alfred Menezes. Another look at “provable se-
curity”. Journal of Cryptology, 20(1):3–37, January 2007.

[KMO+13] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tack-
mann, and Daniele Venturi. Anonymity-preserving public-key en-
cryption: A constructive approach. In Emiliano De Cristofaro and
Matthew Wright, editors, Privacy Enhancing Technologies, volume
7981 of LNCS, pages 19–39. Springer, 2013.

[KMO+14] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tack-
mann, and Daniele Venturi. (De-)Constructing TLS. Cryp-
tology ePrint Archive, Report 2014/020, January 2014.
http://eprint.iacr.org/2014/020.

[KPR03] Vlastimil Kĺıma, Ondrej Pokorný, and Tomá Rosa. Attacking RSA-
based sessions in SSL/TLS. In Colin D. Walter, Çetin K. Koç,

202 BIBLIOGRAPHY

and Christof Paar, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2003, volume 2779 of Lecture Notes in Com-
puter Science, pages 426–440. Springer, 2003.

[KPW13] Hugo Krawcyzk, Kenneth G. Paterson, and Hoeteck Wee. On
the security of the TLS protocol: A systematic analysis. In
Ran Canetti and Juan Garay, editors, Advances in Cryptology —
CRYPTO 2013, volume 8042 of Lecture Notes in Computer Science,
pages 429–448. Springer, 2013.

[Kra01] Hugo Krawczyk. The order of encryption and authentication for
protecting communications. In Joe Kilian, editor, Advances in
Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 310–331. Springer, 2001.

[Kro99] Maxwell Krohn. On the definitions of cryptographic security:
Chosen-ciphertext attack revisited. Senior Thesis, Harvard Uni-
versity, 1999.

[KSS13] Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the secu-
rity of TLS-DH and TLS-RSA in the standard model. Cryptology
ePrint Archive, Report 2013/367, June 2013.

[KT09] Ralf Küsters and Max Tüngerthal. Universally composable sym-
metric encryption. In In Proceedings of the 22nd IEEE Computer
Security Foundations Symposium, pages 293–307. IEEE, 2009.

[KT13] Ralf Küsters and Max Tüngerthal. The IITM model: A simple and
expressive model for universal composability. Cryptology ePrint
Archive, Report 2013/025, January 2013.

[Küs06] Ralf Küsters. Simulation-based security with inexhaustible inter-
active Turing machines. In Proceedings of the 19th IEEE Computer
Security Foundations Workshop, pages 309–320. IEEE, 2006.

[KY00a] Jonathan Katz and Moti Yung. Complete characterization of se-
curity notions for probabilistic private-key encryption. In Pro-
ceedings of the 32nd annual ACM Symposium on Theory of Com-
puting, pages 245–254. ACM, 2000.

[KY00b] Jonathan Katz and Moti Yung. Unforgeable encryption and cho-
sen ciphertext secure modes of operation. In Bruce Schneier,
editor, Fast Software Encryption, volume 1978 of Lecture Notes in
Computer Science, pages 284–299. Springer, 2000.

BIBLIOGRAPHY 203

[Lan10] A. Langley. Transport layer security snap start, June 2010.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger
security of authenticated key exchange. In Willy Susilo,
Joseph K. Liu, and Yi My, editors, ProvSec 2007, volume 4784 of
Lecture Notes in Computer Science, pages 1–16. Springer, 2007.

[LMM10] A. Langley, N. Modadugu, and B. Moeller. Transport layer secu-
rity false start, June 2010.

[Mau02] Ueli Maurer. Indistinguishability of random systems. In Lars R.
Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002,
volume 2332 of Lecture Notes in Computer Science, pages 110–
132. Springer, 2002.

[Mau11] Ueli Maurer. Constructive cryptography: A new paradigm for
security definitions and proofs. In Sebastian Mödersheim and
Catuscia Palamidessi, editors, TOSCA 2011—Theory of Security
and Applications, volume 6993 of Lecture Notes in Computer Sci-
ence, pages 33–56. Springer, 2011.

[Mau13] Ueli Maurer. Conditional equivalence of random systems and in-
distinguishability proofs. In 2013 IEEE International Symposium
on Information Theory Proceedings (ISIT), pages 3150–3154, July
2013.

[Mau14] Ueli Maurer. Cryptography. Lecture Notes, ETH Zürich, February
2014.

[Mey14] Christopher Meyer. 20 Years of SSL/TLS Research—An Analysis of
the Internet’s Security Foundation. PhD thesis, Ruhr Universität
Bochum, Bochum, February 2014.

[Moh10] Payman Mohassel. A closer look at anonymity and robustness
in encryption schemes. In Masayuki Abe, editor, Advances in
Cryptology — ASIACRYPT 2010, volume 6477 of Lecture Notes
in Computer Science, pages 501–518. Springer, 2010.

[MPR07] Ueli Maurer, Krzysztof Pietrzak, and Renato Renner. Indistin-
guishability amplification. In Alfred Menezes, editor, Advances
in Cryptology — CRYPTO 2007, volume 4622 of Lecture Notes in
Computer Science, pages 130–149. Springer, August 2007.

204 BIBLIOGRAPHY

[MR91] Silvio Micali and Phillip Rogaway. Secure computation. In Joan
Feigenbaum, editor, Advances in Cryptology—CRYPTO 91, vol-
ume 576 of Lecture Notes in Computer Science, pages 392–404.
Springer, 1991.

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography. In Inno-
vations in Computer Science. Tsinghua University Press, 2011.

[MRT12] Ueli Maurer, Andreas Rüedlinger, and Björn Tackmann. Confi-
dentiality and integrity: A constructive perspective. In Ronald
Cramer, editor, Theory of Cryptography — TCC 2012, volume
7194 of Lecture Notes in Computer Science, pages 209–229.
Springer, 2012.

[MS96] Ueli Maurer and Pierre Schmid. A calculus for security boot-
strapping in distributed systems. Journal of Computer Security,
4(1):55–80, 1996.

[MSW08] Paul Morrissey, Nigel Smart, and Bogdan Warinschi. A modu-
lar security analysis of the TLS handshake protocol. In Josef
Pieprzyk, editor, Advances in Cryptology — ASIACRYPT 2008, vol-
ume 5350 of Lecture Notes in Computer Science, pages 55–73.
Springer, 2008.

[MT10] Ueli Maurer and Björn Tackmann. On the soundness of
Authenticate-then-Encrypt: Formalizing the malleability of sym-
metric encryption. In ACM Conference on Computer and Commu-
nications Security. ACM, 2010.

[MT13] Daniele Micciancio and Stefano Tessaro. An equational approach
to secure multi-party computation. In Innovations in Computer
Science, 2013.

[MTC13] Ueli Maurer, Björn Tackmann, and Sandro Coretti. Key exchange
with unilateral authentication: Composable security definition
and modular protocol design. Cryptology ePrint Archive Report
2013/555, September 2013.

[Nam02] Chanathip Namprempre. Secure channels based on authenti-
cated encryption schemes: A simple characterization. In Yuliang
Zheng, editor, Advances in Cryptology — ASIACRYPT 2002, vol-
ume 2501 of Lecture Notes in Computer Science, pages 111–118.
Springer, 2002.

BIBLIOGRAPHY 205

[NMO08] Waka Nagao, Yoshifumi Manabe, and Tatsuaki Okamoto. Rela-
tionship of three cryptographic channels in the UC framework.
In Joonsang Baek, Feng Bao, Kefei Chen, and Xuejia Lai, editors,
ProvSec 2008, volume 5324 of Lecture Notes in Computer Science,
pages 268–282. Springer, 2008.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably se-
cure against chosen ciphertext attacks. In Proceedings of the 22nd
annual ACM Symposium on Theory of Computing, pages 427–437.
ACM, 1990.

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimp-
ton. Tag size does matter: Attacks and proofs for the TLS record
protocol. In Dong Hoon Lee and Xiaoyun Wang, editors, Ad-
vances in Cryptology — ASIACRYPT 2011, volume 7073 of Lecture
Notes in Computer Science, pages 372–389. Springer, 2011.

[PW85] Andreas Pfitzmann and Michael Waidner. Networks without user
observability. In Franz Pichler, editor, Advances in Cryptology —
EUROCRYPT ’85, volume 219 of Lecture Notes in Computer Sci-
ence, pages 245–253. Springer, 1985.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asyn-
chronous reactive systems and its application to secure message
transmission. In Proceedings of the 2001 IEEE Symposium on Se-
curity and Privacy, pages 184–200. IEEE, 2001.

[PW10] Kenneth G. Paterson and Gaven J. Watson. Plaintext-dependent
decryption: A formal security treatment of SSH-CTR. In Henry
Gilbert, editor, Advances in Cryptology — EUROCRYPT 2010, vol-
ume 6110 of Lecture Notes in Computer Science, pages 345–361.
Springer, 2010.

[RBB03] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-
cipher mode of operation for efficient symmetric encryption.
ACM Transactions on Information and System Security (TISSEC),
6(3):365–403, August 2003.

[RCC+11] S. Radhakrishnan, Y. Cheng, J. Chu, J. Jain, and B. Raghavan.
TCP fast open. In Conference on Emerging Networking Experi-
ments and Technologies, pages 21:1–21:12. ACM, 2011.

[RD09] Marsh Ray and Steve Dispensa. Renegotiating TLS. November
2009.

206 BIBLIOGRAPHY

[Ren05] Renato Renner. Security of Quantum Key Distribution. PhD thesis,
ETH Zürich, September 2005.

[Rog95] Phillip Rogaway. Problems with proposed IP cryptography. Draft,
April 1995. http://www.cs.ucdavis.edu/˜rogaway/papers/draft-
rogaway-ipsec-comments-00.txt.

[Rog02] Phillip Rogaway. Authenticated encryption with associated data.
In ACM Conference on Computer and Communications Security,
pages 98–107. ACM Press, 2002.

[Rog04] Phillip Rogaway. Nonce-based symmetric encryption. In Bi-
mal Roy and Willi Meier, editors, Fast Software Encryption, vol-
ume 3017 of Lecture Notes in Computer Science, pages 348–359.
Springer, 2004.

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security
treatment of the key-wrap problem. In Serge Vaudenay, edi-
tor, Advances in Cryptology — EUROCRYPT 2006, volume 4004
of Lecture Notes in Computer Science, pages 373–390. Springer,
2006. Full version appeared as [RS07].

[RS07] Phillip Rogaway and Thomas Shrimpton. Deterministic authenti-
cated encryption: A provable-security treatment of the key-wrap
problem. Cryptology ePrint Archive, Report 2006/221, August
2007. Full version of [RS06].

[Sha49] Claude E. Shannon. Communication theory of secrecy systems.
Bell System Technical Journal, 28(4):656–715, October 1949.

[SHI+12] E. Stark, L.-S. Huang, D. Israni, C. Jackson, and D. Boneh. The
case of prefetching and prevalidating TLS server certificates. In
Proceedings of the Symposium on Network and Distributed Systems
Security. Internet Society, 2012.

[Sho99] Victor Shoup. On formal models for secure key exchange. Re-
search Report RZ 3120, IBM, April 1999.

[Sho01] Victor Shoup. A proposal for an ISO standard for public key
encryption. Cryptology ePrint Archive, Report 2001/112, 2001.

[Shr04] Tom Shrimpton. A characterization of authenticated-encryption
as a form of chosen-ciphertext security. Cryptology ePrint
Archive, Report 2004/272, October 2004.

BIBLIOGRAPHY 207

[SL94] Roberto Segala and Nancy Lynch. Probabilistic simulations for
probabilistic processes. In Bengt Jonsson and Joachim Parrow,
editors, Concurrency Theory, volume 836 of Lecture Notes in Com-
puter Science, pages 481–496. Springer, 1994.

[Vau02] Serge Vaudenay. Security flaws induced by CBC padding — ap-
plications to SSL, IPSEC, WTLS... In Lars R. Knudsen, editor, Ad-
vances in Cryptology — EUROCRYPT 2002, volume 2332 of Lec-
ture Notes in Computer Science, pages 534–545. Springer, 2002.

[WFS03] Brent R. Waters, Edward W. Felten, and Amit Sahai. Receiver
anonymity via incomparable public keys. In ACM Conference on
Computer and Communications Security, pages 112–121. ACM,
2003.

[WHF02] Doug Whiting, Russ Housley, and Niels Ferguson. Counter with
CBC-MAC (CCM). Submission to NIST, June 2002.

[Yao82] Andrew C. Yao. Theory and applications of trapdoor functions.
In Proceedings of the 23rd Annual Symposium on Foundations of
Computer Science, pages 80–91. IEEE, 1982.

[YWDW06] Guimin Yang, Duncan S. Wong, Xiaotie Deng, and Hauxiong
Wang. Anonymous signature schemes. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryp-
tography — PKC 2006, volume 3958 of Lecture Notes in Computer
Science, pages 347–363. Springer, 2006.

[ZS92] Yuliang Zheng and Jennifer Seberry. Practical approaches to at-
taining security against adaptively chosen ciphertext attacks (ex-
tended abstract). In Ernest F. Brickell, editor, Advances in Cryptol-
ogy — CRYPTO 1992, volume 1440 of Lecture Notes in Computer
Science, pages 292–304. Springer, 1992.

208 BIBLIOGRAPHY

Björn Tackmann
Citizen of the Federal Republic of Germany
Born on April 13, 1980 in Kassel, Germany

PhD Student in Computer Science 8/2008 – 10/2014
ETH Zurich, Department of Computer Science, Switzerland
Thesis Title: A Theory of Secure Communication
Advisor: Prof. Dr. Ueli Maurer

Undergraduate Studies 10/2001 – 7/2008
Universität Karlsruhe (TH), Fakultät für Informatik

und Fakultät für Mathematik, Germany
Thesis Title: Security Properties and Mathematical Foundations of Key

Agreement Protocols
Advisors: Prof. Dr. Jörn Müller-Quade and PD Dr. Stefan Kühnlein
Degrees: Diplom-Informatiker und Diplom-Mathematiker

Programmer and System Administrator 5/2001 – 7/2008
Consultico GmbH, Fuldabrück and Bochum, Germany

Military Service 7/2000 – 4/2001
Panzerlehrbrigade 9, Munster, Germany

High School 8/1994 – 6/2000
Grotefend Gymnasium Münden, Hann. Münden, Germany

