
Synchrony Amplification
Ueli Maurer

Department of Computer Science
ETH Zurich

8092 Zurich, Switzerland
Email: maurer@inf.ethz.ch

Björn Tackmann
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

Email: bjoernt@inf.ethz.ch

Abstract—Various protocols in the cryptography and
distributed systems literature assume some notion of time:
One major (but not the only) example are “synchronous”
models which assume that a protocol is executed in a well-
defined sequence of rounds with round switches that occur
(almost) simultaneously at the parties. In many of the
considered models, the notion of time is either implicit,
or it is closely interweaved with other mechanics of the
model such that formally proving even simple statements
becomes a tedious task.

In this work, we develop an abstract formal model that
captures exactly how the availability of clocks with “weak”
synchrony guarantees can benefit parties; in particular,
we show how—and at what cost—the “synchrony” of
clocks can be improved. Proofs in this model are simple
and the statements transfer to all models that satisfy the
abstraction.

The main contribution of this paper is not the actual
statements we prove (which mostly verify folklore be-
liefs), but the formal model that follows the construction
paradigm of abstract cryptography and allows to state these
proofs in a simple yet rigorous manner. Indeed, the paper
is a step towards a treatment of synchronous cryptographic
protocols in this constructive sense.

I. INTRODUCTION

Many protocols that are used in computer networks
make use of time. This may either be explicit, as for
“time-out” messages that are issued if some expected
message is delayed for too long, or implicit, as for
synchronous protocols that are executed in a sequence of
“rounds,” where the local round switches at the parties
involved in the protocol execution occur (almost) simul-
taneously. The usual justification for these models is that
the “rounds” can be emulated using weakly synchronous
clocks and communication channels with a known upper
bound on the delay until a message is delivered.

One natural goal of parties that have access to weakly
synchronous clocks is to improve the synchrony, poten-
tially at the cost of reducing the clock speed. In the spirit
of [MR11], we consider clocks as resources available
to the parties and a protocol as a construction of one
resource from another one. In particular, we ask which
constructions can be achieved.

A. Previous Work

The arguably most influential paper on the effects
of time on distributed systems is [Lam78]. In fact, the
physical clock model introduced there is continuous but
otherwise similar to the formalization we present here.
The main benefit of our model is the cleaner and more
rigorous formalism that makes the goals and assumptions
of protocols explicit and is derived from [MR11].

The model presented in [KLP05] extends the inter-
active Turing machine (ITM) framework widely used
in cryptography by extending each such ITM with an
additional “clock tape.” The clock tapes of the individual
ITMs (which encode the protocol) can be written to by
the “adversary,” which is another ITM that captures po-
tential misbehavior. While this formalism drawn from the
models prevalent in the cryptographic literature makes
the model very expressive, its complexity inhibits simple
proofs (even for trivial statements). Also, the exact
formalization prohibits statements about the termination
of protocols, which is one major reason for protocols to
use time.

The Timed Automata in [LV96], [KLSV03] extend
the state-transition model of automata by continuous
trajectories on the states. While this allows to capture the
influence of real-time in a detailed and concrete way, it
seems fair to say that it results in a fairly complex model.

B. Contributions

The main contribution of this work is the rigorous
and formal yet simple model. The definitions are based
on ideas developed in [MR11]; clocks are considered as
resources that are available to the parties, and a protocol
is a construction between such resources.

The model developed here, however, is restricted in
that it does not allow for resources being available
in addition to the clocks. An extended model that is
capable of also capturing reactive resources such as
communication channels (while preserving the simplicity
of the current model) is currently in preparation.

II. PRELIMINARIES

A. Notation

For a number n ∈ N, let [n] := {1, . . . , n}. If, for two
functions f and g, we write f(·) ≥ g(·), we mean that
the condition holds on the complete domain.

B. Systems: Resources and Converters

Both clocks and protocols are formalized as systems.
At the highest level of abstraction, a system is an abstract
object with interfaces through which it interacts with the
environment and with other systems [MR11]; interfaces
are labeled with elements of a label set I. Two systems
are composed into a single system by connecting one
interface of each system.

We consider the setting in which n parties have access
to (weakly) synchronous clocks. We distinguish two
types of systems: The first type are n-party clocks that
are resources according to [MR11] and provide one
interface for each party; resources are generally denoted
by upper case letters. The second type are converters
that are denoted by small Greek letters and model local
actions of a party. A converter provides two interfaces:
one inner interface that connects to a clock and one outer
interface provided to the party. If the party corresponding
to interface i ∈ I accesses the resource R via the
converter τ , this is denoted as τ iR.

For such a systems algebra, we usually require the
following type of generalized associativity, which is
explained in more detail in [MR11].

Definition 1. A set of systems with compositions is
composition-order independent if for any system com-
posed of several systems, the order in which the systems
are composed does not matter.

A protocol for resources with I interfaces can then
simply be defined as a tuple of |I| converters, one
converter for each party that has access to the resource.

C. Constructive Cryptography

This paper is based on the construction paradigm
introduced in [MR11], [Mau11]: The goal of a protocol
or scheme is phrased as constructing a resource with
the desired behavior from one or more given ones. As
the given resources and the constructed ones are objects
of the same type, such a definition is predestined for
protocol composition: The resources constructed by one
protocol are used by another one, which induces a serial
composition operation for protocols.

Definition 2 (Construction). A construction1 for a re-
source set Ω and a constructor set Γ is a subset of
Ω×Γ×Ω. A construction is often denoted as an arrow
“−→” as follows: If (R,α, S) is in the construction, then
we write R

α−→ S and say that S can be constructed
from R (or that S can be reduced to R) by α.

In this paper, the resource set Ω is the set of all clocks,
and a constructor in the set Γ corresponds to a scheme
or protocol executed by the parties.

D. Specifications

A further notion derived from [MR11] is the concept
of a specification, which technically is a set of resources
and formalizes the guarantee that the parties have access
to any one resource from the set. Construction notions
for resources extend generically to specifications: For
two specifications R,S ⊆ Ω and a constructor α ∈ Γ,

R α−→ S :⇔ ∀R ∈ R ∃S ∈ S : R
α−→ S.

III. TIME AND CLOCKS

For protocols that make use of clocks, the absolute
value of the time is not of interest.2 Indeed, for a
single isolated party, a local clock is merely a source
of “activations” (such as a processor’s clock); a party
can of course assign to each activation some label or
identifier.3 In distributed systems, the main use of time
is to derive information about the order of events at
different locations [Lam78], and a guarantee on the
synchrony of clocks states that the activations issued to
different parties are ordered in a specific manner.

These two purposes of using clocks—activations and
some global ordering—are captured by specifying the
availability of (weakly) synchronous clocks as an n-
party resource. Restricted to the local view of each
party, a clock is merely an (a priori infinite) sequence
of activations, that is, unary outputs of the resource. The
“global” guarantee of the clocks for multiple parties is
described exactly by how the activations to the individual
parties are interleaved.

Definition 3 (Clock). An n-party clock is a sequence
C = (Ck)k≥1 of sets with Ck ⊆ [n].

The interpretation of a clock C is that it proceeds
in steps, and in the k-th step it issues an activation at
the interfaces of all parties i with i ∈ Ck. The setting

1This concept was called reduction in [MR11]; however, we prefer
the more descriptive term construction from [Mau11].

2Some run-time environments use the clock register as a source of
entropy, though.

3A party can in particular count the activations and call some number
of such activations a second, a minute, and so on.

2

where |Ck| > 1 corresponds to the situation where two
parties obtain activations in such a way that no “real-
time” difference can be measured between these events;
they are (essentially) simultaneous. Intuitively, the global
index corresponds to the most fine-grained resolution
that can be observed with respect to time.

The knowledge about the ordering of events is often
not complete; the parties might only know that their
clocks advance at similar speed. Such a weaker guarantee
is specified by a clock specification, a set of clocks.

Definition 4 (Clock specification). An n-party clock
specification is a set C of n-party clocks.

The local time of a party i ∈ [n] connected to a clock
C = (Ck)k≥1 with respect to the global index k can,
without loss of generality, be defined to be the number
of activations that the party obtained up to k.

Definition 5 (Local time). The local time at the k-th
index at party i ∈ [n] is defined as

loci
C(k) := |{k′ ≤ k | i ∈ Ck′}| .

The speed of a clock is measured by its “rate” with
respect to the global index k: the number of activations
issued up to k. The rate can of course be defined for
each individual party or for the complete clock (as the
rate of the “slowest” party). Since we will be interested
in comparing how the rates of clocks evolve over time,
we consider the rate of a clock as a function of the index.

Definition 6 (Rate). For a clock C and an index
k ∈ N, the rate of C at party i up to index k is
the value rati

C(k) := loci
C(k)
k . For brevity, we define

ratC(k) := mini∈[n] rati
C(k) and the asymptotic rate

ratC := limk→∞ ratC(k) (if defined).

An important measure of the synchrony of a clock is
the offset, that is, the maximum difference between the
local times at two different parties.

Definition 7 (Offset). For a clock C, the offset at index
k ∈ N is defined as

offC(k) := max
i,j∈[n]

∣∣∣loci
C(k)− locj

C(k)
∣∣∣ .

For a function δ : N → N, a clock C is called a δ-
bounded offset clock if offC(·) ≤ δ(·). The specification
Coff

δ is defined as Coff
δ := {C| offC(·) ≤ δ(·)}.

Bounded-offset clocks guarantee that the clocks of all
parties advance at (essentially) the same speed. This is
a strong assumption, which is not justifiable for many
clocks used in practice where one might only want to
make the assumption that the difference in speed is
bounded; that is, the clocks have a bounded drift.

Definition 8 (Drift). For k ∈ N, the drift of a clock C
up to index k is defined as

drfC(k) := max
i,j∈[n]

loci
C(k)

locj
C(k)

.

We set drfC(k) := 1 for all k with mini∈[n] loci
C(k) = 0.

For a function ρ : N → R, a clock C is called a ρ-
bounded drift clock if drfC(·) ≤ ρ(·). The specification
Cdrf

ρ is defined as Cdrf
ρ := {C|drfC(·) ≤ ρ(·)}.

Note that our definition of drift differs from that used,
for instance, in [KLP05] in that they require that the
difference in speed is bounded for every time interval.
Such a notion of “smoothness” is stricter, but our result
in Theorem 8 extends to this case.

IV. CONVERTERS, PROTOCOLS, AND
CONSTRUCTIONS

A. Converters

If the only resources available to the parties are clocks
and they cannot make use of other resources such as
communication channels, then a converter that a party
uses to “transform” clocks can only ignore certain acti-
vations and forward others. Consequently, the converter
can be specified as a sequence of integers that specify
the activations that are forwarded.

Definition 9 (Converter). A (clock) converter τ is a
strictly increasing (finite or infinite) sequence (tl)l≥1 of
integers tl ∈ N.

We describe the clock that is produced by applying a
converter at some interface of the original clock.

Definition 10. Let C = (Ck)k≥1 be a clock, i be an
interface of the clock, and τ = (tl)l≥1 be a converter.
The converted clock C ′ := τ iC obtained by attaching
the converter τ at the interface of party i is described by
the sequence C ′ = (C ′k)k≥1 with

C ′k =
{

Ck, if ∃l ∈ N : loci
C(k) = tl,

Ck \ {i} otherwise.

For a clock specification C, we define

τ iC :=
{
τ iC : C ∈ C

}
.

Note that the algebra of clocks and converters fulfills
the notion of composition order independence from Def-
inition 1. This is obvious because applying a converter
at some interface i “transforms” the clock in a way
irrespective of what happens at the other interfaces.

3

B. Protocols

A protocol is a tuple of converters; one converter for
each party.

Definition 11. A (clock transformation) protocol is a
tuple τ = (τi)i∈[n] of converters τi = (til)l≥1. Applying
of a protocol to a clock is defined as τC = τ1

1 . . . τn
n C.

This notion extends naturally to clock specifications.

By definition, a protocol can only decrease the rate of
a clock (converters cannot generate activations). In prac-
tical applications, one would be interested in protocols
with a minimal such slackness.

Definition 12 (Efficiency). Let τ be a protocol, and l ∈
N. The efficiency of τ at index l is defined as effτ (l) :=
l/ maxi∈[n] t

i
l. For finite protocols, the efficiency after

the last defined index is 0.

Symmetric protocols in which all parties use the
same converter are an important class of protocols:
For constructions where both the given and the desired
specifications are symmetric with respect to the parties,
the interesting protocols are of this form. For this type
of protocol, we show that the rate of the clocks is
transformed in the expected sense.

Lemma 1. Let C be a clock and τ be a symmetric
protocol, that is, τ = (τ, . . . , τ) with τ = (tl)l≥1. Then,

ratτC(k) = effτ (tv) · ratC(k),

for all k with ∃v ∈ N : tv = mini∈[n] loci
C(k), that is,

indices at which the “slowest party” is activated.

Proof: By Definitions 6 and 10, ratτC(k) =
mini∈[n]

loci
τC(k)
k , and loci

τC(k) = min{l | tl ≥
loci

C(k)}. By the condition on k, ratC(k) = tv/k and
effτ (v) = v/tv for v as above. By monotonicity,

min
i∈[n]

min{l | tl ≥ loci
C(k)}

= min{l | tl ≥ min
i∈[n]

loci
C(k)} = v,

which concludes the proof.
For the indices which do not correspond to activations

of τC, we can still prove bounds for the rate.

Lemma 2. For C and τ as in Lemma 1,

tlk
tlk+1 − 1

· effτ (lk) · ratC(k)

≤ ratτC(k) ≤ effτ (lk) · ratC(k),

with lk := min{v | tv ≥ loci
C(k)} = loci

τC(k).

Proof: By the definition of lk,

loci
C(k)

tlk+1 − 1
≤ loci

τC(k)
lk

≤ loci
C(k)
tlk

,

so ratτC(k) ≤ mini∈[n]
lk
tlk

· loci
C(k)
k . The other inequal-

ity follows analogously.

Corollary 3. Let C be a clock and τ be a symmetric
protocol with constant efficiency, that is, effτ (·) = η ∈
(0, 1]. Then, ratτC = η · ratC .

C. Constructions

A (clock transformation) protocol induces a natural
notion of construction:4 Denote by Ω the set of all
clocks, and by Γ the set of all (clock transformation)
protocols. Then we obtain, for C1, C2 ∈ Ω and τ ∈ Γ,

C1
τ−→ C2 :⇔ τC1 = C2.

This definition extends to clock specifications as de-
scribed in Section II: For each C ∈ C1, the constructed
τC must be in C2. For specifications, however, a further
notion of construction, denoted by 7−→, is interesting:
For two specifications C1 and C2, we can ask whether
there is a protocol with at least efficiency η that con-
structs C2 from C1. More precisely, for C1, C2 ⊆ Ω and
η : N → [0, 1],

C1
η7−→ C2 :⇔ ∃τ ∈ Γ : effτ (·) ≥ η(·) ∧ C1

τ−→ C2.

V. SYNCHRONY AMPLIFICATION

In order to use synchronous protocols, one needs
synchronized clocks that determine the round switches.
This type of synchrony is described by the specification
Csync = Coff

1 , and this section describes from which type
of assumption such synchrony can be achieved.

Lemma 4. Let δ1, δ2 ∈ N with δ1 ≥ δ2.5 From a δ1-
offset bounded clock C1, we can construct a δ2-offset
bounded clock C2 using a protocol τ with

effτ (l) =
l

b(l − 1) · δ1/δ2c+ 1
.

Proof: We consider the symmetric protocol τδ1/δ2

in which each converter τi is defined by the (same)
sequence (tl)l≥1 with tl = b(l − 1) · δ1/δ2c + 1. We

4For a cryptographic treatment in the spirit of [MR11], we also have
to specify the behavior of clocks with respect to dishonest parties. Yet,
if we specify that dishonest parties are activated by a clock for every
index, then with simulators σ = (1, 2, . . .) the construction −→ is
the same as that considered in [MR11].

5Of course, δ ∈ N can be seen as the constant function n 7→ δ.

4

set C2 = τδ1/δ2C1. Note that this in particular means
that

b(loci
C2

(k)− 1) · δ1/δ2c+ 1 ≤ loci
C1

(k) (1)

≤ bloci
C2

(k) · δ1/δ2c,
(2)

where both (1) and (2) use Definition 10 and (2) also
uses δ1 ≥ δ2.

Assume that there exists a k ∈ N with offC2(k) > δ2.
This means that there exist i 6= j with

loci
C2

(k)− locj
C2

(k) = δ2 + 1. (3)

Together, this means that

loci
C1

(k)− locj
C1

(k)− 1

≥ b(loci
C2

(k)− 1) · δ1/δ2c − blocj
C2

(k) · δ1/δ2c (4)

= bδ2 · δ1/δ2c = δ1, (5)

where (4) follows from (1) and (2), and (5) follows
from (3): loci

C2
(k) − 1 and locj

C2
(k) have the same

remainder modulo δ2. This equation contradicts the
assumption about C1, and the efficiency statement is
obvious.

Indeed, we can prove that the rate of the clocks is
transformed as expected, which follows from Lemma 2.

Lemma 5. For δ1, δ2, C1, and τ as in Lemma 4,

ratτC1
(·) ≥ δ2

δ1
· ratC1

(·).

Lemmas 4 and 5 imply that we can obtain a round-
synchronous clock from any bounded-offset clock, the
rate degrades by a factor depending on the given clock.

Theorem 6. For δ1, δ2 ∈ N with δ1 ≥ δ2,

Coff
δ1

δ2/δ17−→ Coff
δ2

.

In particular, Coff
δ1

δ−1
17−→ Csync.

We also prove a converse statement: If we only have
a guarantee for the drift, the offset of the clock can grow
exponentially (as a function of k). The following lemma
states that one can obtain a round-synchronous clock
only at the cost of a rapidly decreasing rate.

Lemma 7. Let ρ = p
q ∈ Q, ρ > 1, and let τ =

((t1l)l, . . . , (tnl)l) be a protocol that achieves Cdrf
ρ

τ−→
Csync. Then, for tiv ≥ 2 · q2/p, tiv+2 ≥ ρ/2 · tiv .

Proof: The specification Cdrf
ρ contains the clock C

with 2 ∈ Ck for all k ∈ N and 1 ∈ Ck for k = bj · ρc
with some j ∈ N. This clock has drfC(k) ≤ ρ.

Assume that the protocol τ with τ1 = (t1l)l≥1 and
τ2 = (t2l)l≥1 is such that τC is synchronous. Hence, for
each value t2v it must hold that

min
{
k

∣∣loc1
C(k) = t1v+1

}
≤ min

{
k

∣∣loc2
C(k) = t2v+2

}
,

that is, party 1 switches to v +1 before party 2 switches
to v + 2. Hence, t2v+2 ≥ bt1v+1 · ρc for the clock C.

Of course, using the conversely defined clock C ′ ∈
Cdrf

ρ , we can conclude that t1v+1 ≥ bt2v · ρc. Plugging the
two equations together, we obtain that t2v+2 ≥ bbt2vρcρc.
From this, the statement for the tiv can be easily com-
puted.

By the lemma, for a clock C with constant rate, τC
has asymptotical rate log k/k. The following theorem is
a consequence of Lemma 7.

Theorem 8. Cdrf
ρ

η7−→ Csync only if η(·) vanishes expo-
nentially.

Together, Theorems 6 and 8 imply that it is also
impossible to efficiently construct offset-bounded clocks
for any constant from an arbitrary bounded-drift clock.

VI. CONCLUSION AND FUTURE WORK

We have developed a formal model that allows to
make statements about the synchrony of clocks in a
simple yet rigorous manner, which we demonstrated by
proving one “positive” and one “negative” statement
about amplifying synchrony.

The current model does not allow for reactive re-
sources such as communication channels; a full-fledged
model that also covers this type of resource and can
be seen as an extension of the model presented here is
currently being developed. Yet, the statements proven
here will be maintained.

REFERENCES

[KLP05] Y. T. Kalai, Y. Lindell, and M. Prabhakaran. Concurrent
composition of secure protocols in the timing model. In
STOC, pages 644–653. ACM, 2005.

[KLSV03] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager.
Timed I/O automata: A mathematical framework for mod-
eling and analyzing real-time systems. In 24th IEEE RTSS,
pages 166–177. IEEE, December 2003.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in
distributed systems. C. ACM, 21(7):558–565, July 1978.

[LV96] N. Lynch and F. Vaandrager. Forward and backward
simulations—Part II: Timing-based systems. Information
and Computation, 128(1):1–25, July 1996.

[Mau11] U. Maurer. Constructive cryptography: A new paradigm
for security definitions and proofs. In TOSCA, LNCS.
Springer-Verlag, 2011.

[MR11] U. Maurer and R. Renner. Abstract cryptography. In ICS.
Tsinghua University Press, 2011.

5

