
Fair Distributed Computation
of Reactive Functions?

Juan Garay1, Björn Tackmann2,??, and Vassilis Zikas3,? ? ?

1 Yahoo Labs, Sunnyvale, CA, USA
garay@yahoo-inc.com

2 UC San Diego, Computer Science and Engineering, San Diego, CA, USA
btackmann@eng.ucsd.edu

3 ETH Zurich, Department of Computer Science, Zurich, Switzerland
vzikas@inf.ethz.ch

Abstract. A fair distributed protocol ensures that dishonest parties
have no advantage over honest parties in learning their protocol’s output.
What makes fairness a particularly intriguing research topic is Cleve’s
seminal result [STOC’86], which proved that fairness is impossible to
achieve in the presence of dishonest majorities and ignited a quest for
more relaxed, yet meaningful definitions of fairness. A common pattern
in existing works, however, is that they only treat the case of non-
reactive computation—i.e., distributed computation of “one-shot” (state-
less) functions, in which parties give all inputs strictly before any output
is computed. Yet, many natural cryptographic tasks are of a reactive
(stateful) nature.
In this work, we introduce the first notion of fairness tailored to re-
active distributed computation, which can be realized in the presence
of dishonest majorities. Our definition builds on the recently suggested
utility-based fairness notion (for non-reactive functions) by Garay et al.
[PODC’15], which, informally, measures the protocol’s fairness by means
of the utility of an adversary who aims to break it. As in the [PODC’15]
work, our approach enjoys the advantage of offering a comparative no-
tion, inducing a partial order on protocols with respect to fairness.
We investigate protocols that restrict the adversary’s utility and provide,
for each choice of parameters specifying this utility, a protocol for fair
and reactive two-party computation, which is optimal for a (natural)
range of parameters. Our study shows that achieving fairness in the re-
active setting is more complex than in the much-studied case of one-shot
functions, as increasing the number of rounds used for reconstructing the
output can lead to improved fairness, and the minimal required number
of rounds depends on the exact values of the adversary’s utility.

Keywords: Cryptographic protocols · secure multi-party computation · fairness
· game theory

? The full version of this paper can be found in [13].
?? Research done in part while at ETH Zurich, and partly supported by the SNF

through Fellowship no. P2EZP2-155566 and by NSF grant CNS-1228890.
? ? ? Research supported in part by the SNF through Ambizione grant PZ00P-2142549.

1 Introduction

In secure multi-party computation (MPC) [19, 14], a set of n parties wish to
perform some joint computation on their inputs in a secure manner, despite the
arbitrary behavior of some of them. The basic security requirements are privacy
(cheating parties learn only their output of the computation) and correctness
(cheaters cannot distort the outcome of the computation). An additional desired
property is fairness, which, roughly speaking, requires that the protocol does not
give a cheating party any advantage in learning the output of the computation
over the honest parties.

In traditional cryptographic definitions, the worst-case scenario of collabora-
tive cheating is captured by the notion of a (central) adversary. Informally, the
adversary is an entity which takes control of (“corrupts”) parties and then uses
them to attack the computation. Unfortunately, an early impossibility result by
Cleve [8] established that with such an adversary it is impossible to achieve all
three properties—correctness, privacy and fairness—simultaneously, unless there
is a majority of honest (i.e., uncorrupted) parties.

Following Cleve’s impossibility, much work has focused on achieving mean-
ingful weaker notions of fairness. One main example of this are gradual release-
type approaches [4, 2, 9, 5, 18, 12], in which parties take turns in releasing bits of
information. More recently, Asharov et al. [1] suggested a definition of fairness
for the case of two parties using ideas from so-called “rational cryptography,”
where all the protocol participants are modeled as rational players aiming to
maximize a given utility function, and presented a gradual-release-based proto-
col satisfying their definition. This rational model for fairness was later enhanced
and extended in various ways (e.g., arbitrary instead of fail-stop misbehavior,
ideal-world/real-world definition) by Groce and Katz [16].

All of these weaker notions of fairness, however, are formalized in an “all-
or-nothing” manner, in the sense that either a protocol achieves the respective
security definition, or the notion renders the protocol unfair and makes no fur-
ther statement about it. For example, this is the case for resource fairness [12],
which formalizes the intuition of the gradual release paradigm [4, 2, 9, 5, 18] in a
simulation-based framework. Indeed, a resource-fair protocol should ensure that,
upon abort by the adversary, the amount of computation that the honest party
needs for producing the output is comparable to the adversary’s for the same
task; yet, a protocol that achieves a worse ratio between the amount of work
required by the honest party and the adversary is not distinguished from a fully
unfair one. The same holds for the above fairness definitions in rational cryptog-
raphy, which require the protocol to be an equilibrium strategy with respect to
a preference/utility function for curious-but-exclusive agents, where each agent
prefers learning the output to not learning it, but would rather be the only one
that learns it. We remark, though, that some of these frameworks do offer com-
pleteness results, in the sense that they show that one can construct protocols
that are fair in the respective notions; nevertheless, none of them provides a
comparative statement for protocols which do not fully satisfy their property.

Recent work by Garay et al. [11] introduced a quantitative approach to fair-
ness, based on the idea that one can use an appropriate utility function to express
the preferences of an adversary who wants to break fairness.4 The approach al-
lows for comparing protocols with respect to how fair they are, placing them in a
partial order according to a relative-fairness relation. Previously, the only other
notion providing any sort of comparative statement was that of 1/p-security
(aka. “partial fairness”) [15, 3], where security is given up with probability 1/p
for some polynomial p, but which does not always guarantee privacy and cor-
rectness (see [11] for a detailed comparison).

Technically, the approach of [11] builds on machinery developed in the re-
cently proposed Rational Protocol Design (RPD) framework of Garay et al. [10].
In more detail, the framework describes how to design protocols which keep the
utility of an attacker aiming at provoking certain security breaches as low as
possible. At a high level, this is then used as follows: first, one specifies the class
of utility functions that naturally capture an adversary attacking a protocol’s
fairness, and then one interprets the actual utility that the best attacker (i.e.,
the one maximizing its utility) obtains against a given protocol as a measure
of the protocol’s success in satisfying the property. The more a protocol limits
its best attacker with respect to the fairness-specific utility function, the fairer
the protocol is. We remark that, in addition, this quantitative fairness approach
preserves the composability of the underlying security model (such as when us-
ing, e.g., [6, 7]) with respect to standard secure protocols, in the sense that it
allows the replacement of an ideal component (a “hybrid” or ideal functionality
in the language of [7]) in a fair/optimal protocol by a protocol which securely
implements it without affecting its fairness/optimality.

Our contributions. We present the first notion of fairness tailored to reactive
distributed computation, where parties provide inputs and receive outputs mul-
tiple times during the course of the computation; the notion can be realized in
the presence of dishonest majorities.

We specify the utility function characterizing the incentives of an attacker
who aims at breaking fairness of a two-party MPC protocol, deriving the nat-
ural quantitative notions of fairness and of protocol optimality. However, and
as expected, formulation and analysis are quite more complex here than in the
non-reactive case [11], where for example the honest parties can simply restart
the protocol after an “early abort” where no party received outputs, using de-
fault inputs for the parties that caused the abort. In contrast, in the reactive
case earlier rounds in the computation may already have leaked information to
the adversary, which makes a restart potentially unsafe. As a result, the protocol
we present bounds the adversary’s utility by the maximum of two terms, one of
which is the same as in the non-reactive case and corresponds to the adversary’s
strategy of aborting right after obtaining its output, and the other one stems
from the potential “early aborts” and depends on the number of rounds used

4 This approach is incomparable to the one in rational cryptography, as the honest
parties are not rational and follow whichever protocol is designed for them.

in the reconstruction of the protocol output as well as the exact values of the
adversary’s utility.

We then derive lower bounds, showing the protocol optimally fair for a natu-
ral class of parameter values—at a high level, those expressing that the adversary
prefers that the honest party does not get the output, to the extent that he is
willing to have negative utility when all parties receive the output (otherwise
previous results apply), but only up to a point, after which the adversary’s aver-
sion toward giving the output to the honest parties is so large that he will abort
any protocol prematurely. Besides being optimally fair, the protocol is also op-
timal with respect to the number of reconstruction rounds. For the remaining
values, the lower bound we derive is close to the bound achieved by our protocol
but not tight; we leave the closing of this gap as an open problem.

Organization of the paper. The remainder of the paper is organized as fol-
lows. In Section 2 we describe notation and the very basics of the RPD frame-
work [10] that are needed for understanding and evaluating our results. In Sec-
tion 3 we define the utility function of attackers who aim at violating fairness,
which enables the relative assessment of protocols as well as the notions of “op-
timal” fairness which we use in this work. This section is a generalization of
the approach in [11] to the reactive computation case. Section 4 is dedicated to
the fair reactive protocol, starting with a general outline in Section 4.1, and Sec-
tion 4.2 explaining the protocol in detail; lower bounds are shown in Section 4.3.

2 Preliminaries and Model

We first establish some notational conventions. For an integer m ∈ N, the set
of positive numbers smaller or equal to m is [m] := {1, . . . ,m}. In the context
of two-party protocols, we will always refer to the parties as p1 and p2, and for
i ∈ {1, 2} the symbol ¬i refers to the value 3− i (so p¬i 6= pi). Most statements
in this paper are actually asymptotic with respect to an (often implicit) security
parameter k ∈ N. Hence, f ≤ g means that ∃k0 ∀k ≥ k0 : f(k) ≤ g(k), and a
function µ : N→ R is negligible if for all polynomials p, µ ≤ 1/p, and noticeable
if there exists a polynomial p with µ ≥ 1/p. We further introduce the symbol

f
negl

≈ g to denote that ∃ negligible µ : |f − g| ≤ µ, and f
negl

≥ g to denote

∃ negligible µ : f ≥ g − µ, with
negl

≤ defined analogously.
For the model of computation and protocol composition, we follow Canetti’s

adaptive simulation-based model for multi-party computation [6]. The protocol
execution is formalized by collections of interactive Turing machines (ITMs); the
set of all efficient ITMs is denoted by ITM. We generally denote our protocols
by Π and our (ideal) functionalities (which are also referred to as the trusted
party [6]) by F both with descriptive super- or subscripts, the adversary byA, the
simulator (aka the ideal-world adversary) by S, and the environment by Z. The
random variable ensemble {execΠ,A,Z(k, z)}k∈N,z∈{0,1}∗ , which is more com-
pactly often written as execΠ,A,Z , describes the contents of Z’s output tape
after an execution with Π, F, and A, on auxiliary input z ∈ {0, 1}∗.

Secure computation of reactive functions. The framework in [6] considers
synchronous protocols with guaranteed termination and allows for sequential and
modular composition, but lacks a formal definition of computation of reactive
functions.5 We describe here the real-world/ideal-world experiments for reactive
functions based on the model with adaptive adversaries [6, Sect. 5]. Although we
will be designing protocols only for two-party computation (2PC), since this is
the first formal treatment of the reactive setting with respect to fairness, we pro-
vide definitions for the more general case of n parties. The resulting model allows
for modular composition in a similar sense as in [6]: in each round of a protocol,
the parties can make use of a sub-protocol computing another functionality. For
the reduction to work, it is important that the higher-level protocol does not
continue—apart from interacting with the sub-protocol—until the sub-protocol
has terminated.

As discussed in [17], reactive computation can be seen as an ordered sequence
of computations of non-reactive functions that can maintain a joint (private)
state. More concretely, reactive computation is specified by a vector of (proba-
bilistic) functions f = (f1, . . . , fm), where each fλ ∈ f takes as input a vector
of values from {0, 1}∗ ∪ {⊥} (corresponding to the parties inputs to fλ), a uni-
formly random value r from a known domain R (corresponding to the random
coins used for evaluating fλ), and a state vector Sλ ∈ (({0, 1}∗∪{⊥})n×R)(λ−1),
which includes the inputs and random coins used for the evaluation of functions
f1, . . . , fλ−1. Each fλ ∈ f outputs a vector of strings yλ = (y1,λ, . . . , yn,λ) ∈
{0, 1}n, where yi,λ is pi’s output.

The ideal process. At a high level, execution in the ideal world is similar to the
corresponding experiment in [6], but instead of a single function, the trusted

third party (TTP, or “functionality”) Ffrc is parameterized by the vector f =
(f1, . . . , fm) of functions to be sequentially evaluated, with each of these func-
tions receiving as input the state vector (consisting of all inputs received so far
as well as the used randomness) along with parties’ inputs to the function which
is currently computed. The output of the computation is taken to be the vector
of outputs of all functions in f .

The ability to maintain a joint state, however, is not the only difference
between reactive and non-reactive computation. Rather, we need to ensure that
parties be able to choose their input for any fλ, λ ∈ [m], depending on inputs
and outputs from the evaluation of f1, . . . , fλ−1. Thus, we cannot fix the input
sequence of the parties at the beginning of the protocol execution as is the
case with the ideal-evaluation experiment of non-reactive functions. Instead, we
assume that every party pi ∈ P gives as input to the trusted party a sequence
of m input-deciding functions Inpi

1, . . . , Inpmi , where for each λ ∈ [m], Inpλi :
(({0, 1}∗)λ−1)2 → {0, 1}∗ is a function that on input the inputs and outputs from
the evaluation of functions f1, . . . , fλ−1 computes the input for the evaluation of

5 Our definitions can be extended to Universally Composable (UC) security [7] us-
ing the approach of Katz et al. [17] to model terminating synchronous (reactive)
computation in UC.

fλ. (Without loss of generality, assume that pi’s input to f1 is Inp1
i (0, 0).) Unlike

the parties, the simulator is allowed to to choose his inputs during his ongoing
interaction with the TTP.

The real-world execution. The real-world experiment in analogous to the corre-
sponding experiment in [6], where the input of each party pi is his input-deciding
function vector Inpi

1, . . . , Inpmi .

Rational Protocol Design. Our results utilize the Rational Protocol Design
(RPD) framework [10]. Here we review the basic elements that are needed to
motivate and express our definitions and results; we refer to the framework pa-
per [10] for further details. In RPD, security is defined via a two-party sequential
zero-sum game with perfect information, called the attack game, between a pro-
tocol designer D and an attacker A. The designer D plays first by specifying a
protocol Π for the (honest) participants to run; subsequently, the attacker A,
who is informed about D’s move (i.e., learns the protocol) plays by specify-
ing a polynomial-time attack strategy A by which it may corrupt parties and
try to subvert the execution of the protocol (uncorrupted parties follow Π as
prescribed). It suffices to define the utility uA of the adversary as the game is
zero-sum; the utility uD of the designer is then −uA.

In RPD, the definition of utilities relies on the simulation paradigm6, with
the caveat that the real-world execution is compared to an ideal process in which
S gets to interact with a relaxed version of the functionality which, in addition
to implementing the task as F would, also allows the simulator to perform the
attacks we are interested in capturing. For example, an attack to the protocol’s
correctness is modeled by the functionality allowing the simulator to modify the
outputs (even of honest parties). Given such a functionality, the utility of any
given adversary is defined as the expected utility of the best simulator for this
adversary, where the simulator’s utility is defined according to which weaknesses
of the ideal functionality the simulator is forced to exploit.

3 Utility-based Fairness and Protocol Optimality

In this section, we utilize the RPD machinery to introduce a natural fairness rela-
tion (partial order) to the space of efficient protocols for secure reactive two-party
computation (2PC) and define maximal elements in this order to be optimal
protocols with respect to fairness. Towards that goal, we follow the three-step
process described in [10, 11] for specifying an adversary’s utility, instantiating
this process with parameters that capture a fairness-targeted attacker.

Step 1: Relaxing the ideal experiment to allow attacks on fairness.
First, we relax the ideal world to allow the simulator to perform fairness-related
attacks. In particular, we consider the ideal-world experiment for reactive MPC

6 In RPD the statements are formalized in Canetti’s Universal Composition (UC)
framework [7]; however, one can use any other simulation-based model, in particular
the one in [6] described above.

described in Sect. 2 but modify it to allow the simulator S to (1) refuse receiving
his inputs from the functionality and/or (2) refuse the functionality to deliver
outputs to the parties (i.e., instruct it to abort); analogously to [11], the simulator
is allowed to choose when to abort, i.e., before or after receiving his inputs if
he chooses to. The reactive MPC ideal functionality is parameterized by the
(sequence of) functions f = (f1, . . . , fm) as described in Sect. 2 and is denoted

Ff ,⊥rc (or simply F⊥rc if the function sequence is clear from the context). We

point out that when F ·,⊥rc is parameterized with a single function (as in Ff,⊥rc)

then it corresponds to the standard SFE functionality Ff,⊥sfe (i.e., computation
of non-reactive functions) with unfair abort as in [11].

Step 2: Events and payoffs. Next, we specify a set of events in the experiment
corresponding to the ideal evaluation of F⊥rc which capture whether or not a
fairness breach occurs, and assign to each such event a “payoff” value capturing
the severity of provoking the event. The relevant questions to ask with respect
to fairness are:

1. Does the adversary learn “noticeable” information about the output of the
corrupted parties?

2. Do honest parties learn their output?

In comparison to the non-reactive case, there are a priori different ways to define
the events, based on whether one asks for the adversary to receive any output
or all the outputs. Since the reactive computation proceeds round by round, a
natural choice is to ask for the honest parties to receive all outputs, or otherwise
to ask for the adversary to also not receive information about some output. The
corresponding events (which we use to describe fairness) correspond to the four
possible combinations of answers to the above questions. In particular, we define
the events indexed by a string ij ∈ {0, 1}2, where i (resp., j) equals 1 if the
answer to the first (resp., second) question is yes and 0 otherwise. The events
are then as follows:

ER
00: The simulator does not ask Ff,⊥rc for the all of the corrupted party’s outputs

and instructs Ff,⊥rc to abort. This corresponds to neither the honest party
nor the adversary receiving all their outputs.

ER
01: The simulator does not ask Ff,⊥rc for all of the corrupted party’s outputs

and does not instruct it to abort. This corresponds to the honest party
receiving all its outputs and the adversary not receiving some of its outputs.
This accounts also for the case where no party is corrupted.

ER
10: The simulator asks Ff,⊥rc for all his outputs and instructs it to abort before

the honest party receives all its outputs. This corresponds to the adversary
receiving all its outputs and the honest party not receiving some of its out-
puts.

ER
11: The simulator asks the functionality for all his outputs, and allows the

honest party to receive all its outputs (i.e., it does not abort). This accounts
also for the case where all parties are corrupted.

We remark that our definition does not give full advantage to an adversary
corrupting both parties. This is consistent with the intuitive notion of fairness,
as when there is no honest party, the adversary has nobody to gain an unfair
advantage over.

To each of the events ER
ij we associate a real-valued payoff γij which captures

the adversary’s utility when provoking this event. Thus, the adversary’s payoff is
specified by vector γ = (γ00, γ01, γ10, γ11) ∈ R4, corresponding to events ER =
(ER

00, E
R
01, E

R
10, E

R
11).

Finally, we define the expected payoff of a given simulator S (for an environ-
ment Z) to be7:

U
F⊥rc ,γ
I (S,Z) :=

∑
i,j∈{0,1}

γij Pr[ER
ij]. (1)

Step 3: Defining the attacker’s utility. Given U
F⊥rc ,γ
I (S,Z), the utility

uA(Π,A) for a pair (Π,A) of a protocol Π and an adversary A is defined
following the methodology in [10] as the expected payoff of the best simula-
tor8 that simulates A in the F⊥rc-ideal world in presence of the least favorable
environment—i.e., the one that is most favorable to the attacker. To make the

payoff vector γ explicit, we sometimes denote the above utility as ÛΠ,F
⊥
rc ,γ(A)

and refer to it as the payoff of strategy A (for attacking Π).
More formally, for a protocol Π, denote by SIMA the class of simulators for A,

i.e, SIMA = {S ∈ ITM | ∀Z : execΠ,A,Z ≈ execF⊥rc ,S,Z}. The payoff of strategy
A (for attacking Π) is then defined as:

uA(Π,A) := ÛΠ,F
⊥
rc ,γ(A) := sup

Z∈ITM
inf
S∈SIMA

{UF
⊥
rc ,γ

I (S,Z)}. (2)

To complete our formulation, we now describe a natural relation among the
values in γ which is both intuitive and consistent with existing approaches to
fairness, and which we will assume to hold for the remainder of the paper.
Specifically, we will consider attackers whose least preferred event is that the
honest parties receive their output while the attacker does not, i.e., we assume
that γ01 = minγ∈γ{γ}. Furthermore, we will assume that the attacker’s fa-
vorite choice is that he receives the output and the honest parties do not, i.e.,
γ10 = maxij∈{0,1}2{γij}. Lastly, we point out that for an arbitrary payoff vector
γ, one can assume without loss of generality that any one of its values equals
zero, and, therefore, we can set γ00 = 0. This can be seen immediately by setting
γ′ij = γij − γ01. We denote the set of all payoff vectors adhering to the above re-

strictions by Γfair ⊆ R4. Summarizing, our fairness-specific payoff (“preference”)
vector γ satisfies

0 = γ01 ≤ min{γ00, γ11} and max{γ00, γ11} < γ10.

7 Refer to [10, Sect. 2] for the rationale behind this formulation.
8 The best simulator is taken to be the one that minimizes his payoff [10].

Optimally fair protocols. We are now ready to define our partial order relation
for protocols with respect to fairness. Informally, a protocol Π will be at least
as fair as another protocol Π ′ if the utility of the best adversary A attacking
Π (i.e, the adversary which maximizes uA(Π,A)) is no larger than the utility of
the best adversary attacking Π ′ (except for some negligible quantity).

Definition 1. Let Π and Π ′ be protocols, and γ ∈ Γfair be a preference vector.
We say that Π is at least as fair as Π ′ with respect to γ (i.e., it is at least as

γ-fair), denoted Π
γ

� Π ′, if

sup
A∈ITM

uA(Π,A)
negl

≤ sup
A∈ITM

uA(Π
′,A). (3)

We will refer to a protocol which is a maximal element according to the above
fairness relation as an optimally fair protocol.

Definition 2. Let γ ∈ Γfair. A protocol Π is optimally γ-fair if it is at least as
γ-fair as any other protocol Π ′.

4 Fair and Reactive 2PC

The optimally fair two-party computation (2PC) protocol in the non-reactive
case [11] can be described as follows: the protocol chooses one party uniformly
at random, and the output is reconstructed toward this party first. If one party
aborts the protocol early (that is, before the reconstruction phase), the other
party can restart the protocol with a default input for the (corrupted) party
that aborted. Intuitively, this means that the only way for a corrupted party to
prevent the honest party from receiving output is to run the protocol until the
reconstruction phase, hope to be the one that is chosen to receive the output
first, and then abort the protocol. The result is that the adversary’s expected
payoff is bounded by (γ10 + γ11)/2, where γ10 is the payoff for an unfair abort,
and γ11 is the payoff for a fair execution.

The most intuitive idea for solving the same problem for reactive computation
is to apply the same reconstruction protocol for distributing the outputs in each
round of the reactive computation. Unfortunately, the resulting protocol is not
optimal: if the adversary aborts prior to the reconstruction phase in some round
of the reactive computation, but it already achieved outputs in previous rounds,
the honest party cannot safely restart the protocol with a default input for
the corrupted party. Hence, adversaries with a utility satisfying γ00 > γ11 may
be better off by aborting the protocol early and thus definitely preventing the
honest party from obtaining output—the simple adversarial strategy of choosing
one party to corrupt at random and aborting as soon as an output is received
is, in contrast to the non-reactive case, no longer optimal. In fact, even in the
reactive case, if γ11 ≥ γ00 = 0, then the adversary has no incentive to stop the
protocol before obtaining output, so we can use the same protocol as in [11].

4.1 Better Fairness through More Rounds

In case the adversary’s utility satisfies γ00 > γ11, one can improve fairness guar-
antees by adding more rounds to a protocol’s reconstruction phase. The reason is
that if the adversary puts more emphasis on keeping the honest party from learn-
ing the output than on him learning the output himself, he might be tempted to
abort the protocol even without obtaining output. We use the assumption that
ER

01 is the adversary’s least preferred event to threaten him with potentially
only obtaining payoff γ01 in case of an early abort—and γ01 < γ11. By carefully
adapting the probabilities with which we output the value in a certain round of a
reconstruction protocol, we can consistently keep the adversary in the dilemma
between continuing the execution of the protocol or aborting it, maximizing the
honest party’s probability of obtaining the output.

We describe a protocol with r rounds, where one party—chosen at random—
obtains the output during the first r − 1 rounds, and the other party obtains
it only in the last round. In more detail, for each round l = 1, . . . , r − 1 there
is a probability pl ∈ [0, 1] for a party to obtain the output in that round. The
probabilities are the same for both parties since the setting is symmetric. In
each of the rounds, the adversary has the advantage to receive his output before
the honest party; this corresponds to the adversary in each round delaying his
message until receiving the honest party’s message, which is possible unless the
timing guarantees given by the network are extremely strong. Consequently,
in each round l = 1, . . . , r − 1, the adversary can trade giving the probability
pl corresponding to the current ith round to the honest party, obtaining the
probability pl+1 of the next (l+1)st round in exchange. We now have to determine
the values p1, . . . , pr−1 such as to keep the adversary in a constant dilemma.

The payoff for the adversary aborting in round l ∈ [1, . . . , r − 1] can be
computed by the probabilities for the honest party (p1 + · · · + pl−1) and the
adversary (p1 + · · · + pl) to have received the value and the respective payoff
values γ01 and γ10. The condition is then described by the equation(

l+1∑
u=1

pu

)
γ10 +

(
l∑

u=1

pu

)
γ01 =

(
l∑

u=1

pu

)
γ10 +

(
l−1∑
u=1

pu

)
γ01,

which corresponds to, for all l = 1, . . . , r − 2,

pl+1 = pl

(
−γ01
γ10

)
.

With % := −γ01γ10
, we obtain by induction that pl = %l−1p1. Providing the output

to the other party only in the last round means that

r−1∑
l=1

pl =

r−1∑
l=1

(%l−1p1) =

(
r−1∑
l=1

%l−1

)
· p1 = 1/2,

or p1 = 1/2
(∑r−1

l=1 %
l−1
)−1

. In fact, we show in the remaining of the paper that

the protocol achieving this distribution of probabilities is optimal.

As only the rounds of the reconstruction phase are relevant for the achieved
fairness, we call a protocol an r-round-reconstruction protocol if it requires only
r rounds of interaction to reconstruct the outputs after the computation has
taken place. For simplicity, we only consider functionalities in which all parties
receive the same output; the extension to the general case can be achieved using
standard techniques. We now turn to a more detailed description of a fair reactive
2PC protocol, which is optimal when γ11 > −γ10, as it follows from our lower
bound results (Sect. 4.3).

4.2 The Fair Reactive Protocol

At a high level, the protocol works as follows: The functionality is sequentially
evaluating the functions f1, . . . , fm; the invariant of the computation is that at
any point, the state of the computation (i.e., the inputs and randomness used so
far) is shared according to a two-out-of-two authenticated secret sharing. Each
function fλ, for 1 ≤ λ ≤ m, is evaluated by having the two parties evaluate
the function fsh,fλ,D (formally specified in Figure 2) which on input a sharing
〈Sλ−1〉 of the current state along with the parties’ inputs x1,λ and x2,λ, outputs
a sharing 〈Sλ〉 of the updated state Sλ along with a sharing 〈fλ〉 of the outputs
of fλ evaluated on Sλ−1, x1λ and x2,λ. Next, the sharing 〈fλ〉 is reconstructed
in an r-round-reconstruction protocol as follows:

– The index of some party i ∈R {0, 1} is chosen uniformly at random (this will
be the party that will receive the output during some early output round,
i.e., before the last round r);

– for this party pi, a round l∗ ∈ [r − 1] is chosen according to the probability
distribution described in Section 4.1;

– in each round l ∈ [r−1]\{l∗} of the reconstruction protocol, party pi learns
only that this round was not chosen;

– in round l∗, pi learns the complete output;
– in the last round r, the sharing is reconstructed to both parties.

The idea behind the above construction is to have the adversary, in each
round, face the following conundrum: To increase the expected payoff, that is,
the probability of obtaining the output, it has to proceed to the next round.
This means, however, that it first has to finish the current round by sending
a message to the honest party, which will of course increase the honest party’s
probability of receiving the value (and hence reduce the adversary’s payoff). For
this technique to work, however, we need to make sure that no information about
the chosen party and round leaks before the actually chosen party obtains the
message in the chosen round.

To achieve the above properties, we use the function fsh,fλ,D to compute
(and output) r pairs of sharings (〈y11〉, 〈y21〉), . . . , (〈y1r〉, 〈y2r〉) as follows: for
each round l ∈ [r − 1] \ {li}, y1l = y2l = DummyRound, where DummyRound is a
default value signifying that this is not the output; for round li, yili is set to the
output of the function, whereas y¬ili is DummyRound as before. Finally, for the
last round l = r, both y0r and y1r are set to the output of the function.

We are now ready to describe our reactive computation protocol, Π fair
RC , for

evaluating the two-party functionality described by f = (f1, . . . , fm). The pro-
tocol is parametrized by the function vector f , the number r of reconstruction
rounds used for each output, and the probability distribution D on [r− 1] of the
early output round l∗.

Protocol Π fair
RC (p1, p2,D, r, f1, . . . , fm)

Initialize S0 := (⊥,⊥, 0); the parties compute a default sharing of S0, denoted
〈S0〉. For λ = 1, . . . ,m, evaluate fλ sequentially as follows:
1. Use an (unfair MPC) sub-protocol to compute fsh,fλ,D on input the sharing

〈Sλ−1〉 of the current state and the fλ-inputs x
(λ)
1 and x

(λ)
2 of parties p1 and p2,

respectively; if the protocol aborts then abort the execution of Π fair
RC , otherwise

denote by 〈Sλ〉, (〈y(λ)

1,1 〉, 〈y
(λ)

2,1 〉), . . . , (〈y
(λ)

1,r 〉, 〈y
(λ)

2,r 〉) the output of the evaluation.

2. For l = 1, . . . , r do the following sequentially: have 〈y(λ)

1,l 〉 and 〈y(λ)

2,l 〉 recon-
structed towards p1 and p2, respectively (by having pi send his share to p¬i).
3. For each pi ∈ {p1, p2}, if any of the reconstructions yields a value y 6∈ {⊥
, DummyRound} then output y; otherwise abort.

Fig. 1. The protocol for fair reactive 2PC.

We give a complete description of the function fsh,λ,D used by Π fair
RC in Fig. 2.

The function is parameterized by the function f whose output is to be computed,
and further by a probability distribution D on the set [r− 1] according to which
the round l∗ is chosen.

We now analyze the degree of fairness achieved by Π fair
RC , which we later

(Sect. 4.3 show optimal for certain parameters by proving a lower bound on the
adversary’s payoff. The proof of the theorem appears in the full version.

Theorem 1. Let γ = (γ00, γ01, γ10, γ11) ∈ Γfair. Then

ūA(Π
fair

RC ,A)
negl

≤ max

{
γ10

2
∑r−1
l=1 %

l−1
,
γ10 + γ11

2

}
,

with % =
∣∣∣γ01γ10

∣∣∣. In particular, if γ11 > −γ10, then ūA(Π
fair
RC ,A)

negl

≤ γ10+γ11
2 .

The adversary’s payoff depends on the number of rounds used in the recon-
struction, and the optimal number of rounds depends on the exact values of the
adversary’s utility. As long as γ11 > −γ10, we can adapt the probabilities such
that the adversary is incentivized to continue with the protocol, if γ11 ≤ −γ10,
then an abort during the first (non-trivial) reconstruction round is always prefer-
able. We provide more details on this relation in the full version.

4.3 Lower Bounds

In this section, we prove lower bounds on the adversary’s payoff that hold with
respect to arbitrary protocols. In the case γ11 > −γ10, this actually shows that

Function fsh,f,D(〈S〉, x1, x2)

• Upon receiving inputs (x1, 〈S〉1) and (x2, 〈S〉2) from p1 and p2, do:

1. If the shares 〈S〉1 and 〈S〉2 are inconsistent or the reconstructed state
is the abort vector S = (abt, abt), then set the output to y := ⊥;
otherwise, choose r ∈R {0, 1}∗, set y = f(x1, x2, S, r), and update S
by appending x1, x2 and r to S; denote by S′ the updated state.

2. Compute an authenticated sharing 〈S′〉 of S′.

3. Choose a party index i ∈R {1, 2} uniformly at random and choose a

round index l∗
D← [r − 1] according to D.

4. For l = 1, . . . , r − 1, compute the authenticated-sharing pair
(〈y1,l〉, 〈y2,l〉), where yjl is computed as follows:

If l < r, y¬i,l := DummyRound, whereas yi,l :={
y if l = l∗;
DummyRound otherwise.

If l = r, y1,l = y2,l = y.

• Output 〈S′〉, (〈y1,1〉, 〈y2,1〉), . . . , (〈y1,r〉, 〈y2,r〉).

Fig. 2. The function computing the authenticated sharings used in protocol Π fair
RC .

protocol Π fair
RC is optimally fair, as the lower bound tightly matches the upper

bound from Theorem 1. In the other case, i.e., γ11 ≤ −γ10, we still give a lower
bound which is close to the upper bound we proved.

We show the lower bounds on the adversary’s expected payoff using a specific
“two-phase exchange” functionality f⊥2Ex that works as follows: Both parties
input a 2k-bit string, and in the first phase, both obtain the first k bits of the
other party’s input. In the second phase, they both obtain the remaining k bits
of the other party’s input. (See Fig. 3.)

Function f⊥2Ex

The functionality f⊥2Ex is a two-party functionality that proceeds in two rounds:

– Obtain from each pi an input xi ∈ {0, 1}2k, and split xi into xi = yi|zi with
yi, zi ∈ {0, 1}k. Output y1 to p2 and y2 to p1.

– No inputs: output z1 to p2 and z2 to p1.

Fig. 3. The two-phase exchange functionality.

There are simple and generic adversarial strategies Ai that corrupt party pi
in the beginning but follow the protocol honestly until the last output phase of
the protocol. Then, it aborts as soon as it obtained the output—that is, in each

round Ai checks whether the protocol would already provide the output if the
other (honest) party would abort; in this case, Ai aborts the protocol without
sending the messages for that round.9 The bound proven in the following lemma
comes from the fact that if one of the parties gets the output first, then the
adversary Agen corrupting one party at random has a 1/2 chance to corrupt
this party and be the only one to get the output. The payoff of this strategy is
the same as for the SFE (non-reactive) case, and the proof of the lemma also
resembles the proof of the simpler case.

Lemma 1. Let γ = (γ00, γ01, γ10, γ11) ∈ Γfair. For every protocol Π which
securely implements the functionality f⊥2Ex, there exists an adversary A with

ūA(Π,A)
negl

≥ γ10 + γ11
2

. (4)

The lemma shows the optimality of the protocol described in Sect. 4.2 for
all cases where γ11 > −γ10. The next lemma provides a lower bound that is
relevant in the more general case without this restriction, and is also interesting
for protocols for which the bound from Equation (4) is not tight because, e.g.,
they use too few rounds. In fact, in the case of reactive MPC, the maximum
utility of the adversary generally depends on the number of protocol rounds,
and in particular we show a trade-off between the payoff of the generic adversary
and the payoff of adversaries that potentially abort during the protocol without
receiving their output. The proof is in the full version.

Lemma 2. Let γ = (γ00, γ01, γ10, γ11) ∈ Γfair, and Π be an r-round-reconstruc-
tion protocol that securely implements the functionality f⊥2Ex, such that

ūA(Π,Agen) ≤ γ10 + γ11
2

+ ω.

Then, there exists an adversary A with

ūA(Π,A)
negl

≥

(
1
2 −

ω
γ10−γ11

)
γ10∑r−1

`=1 %
`−1

,

where % = −γ01/γ10.

By increasing the number of rounds in the reconstruction phase and choosing
a suitable distribution of probabilities over the rounds, we can decrease the
payoff of the “aborting” adversaries below the bound of the generic adversary,
thus establishing that protocol Π fair

RC is optimally fair. The necessary number of
rounds for the optimal result depends on the exact values of the adversary’s
utility, and can be computed as in Sect. 4.1; details appear in the full version.

Corollary 1. Let γ = (γ00, γ01, γ10, γ11) ∈ Γfair and γ11 > −γ01. Then protocol
Π fair

RC from Fig. 1 is optimally γ-fair.
9 In the case of (reactive) MPC the protocol may output only either the correct value

or an “abort” symbol, as an honest party cannot restart the protocol with a default
input because the adversary already obtained output in the previous rounds.

References

1. Asharov, G., Canetti, R., Hazay, C.: Towards a game theoretic view of secure
computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
426–445. Springer, Heidelberg (2011)

2. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In:
FOCS ’89. pp. 468–473. IEEE (1989)

3. Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computation
without honest majority and the best of both worlds. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011)

4. Blum, M.: How to exchange (secret) keys. ACM Transactions on Computer Science
1, 175–193 (1984)

5. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

6. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13, 143–202 (April 2000),

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In FOCS 2001. pp. 136–145. IEEE (2001)

8. Cleve, R.E.: Limits on the security of coin flips when half the processors are faulty.
In STOC ’86. pp. 364–369. ACM, Berkeley (1986)

9. Damg̊ard, I.: Practical and provably secure release of a secret and exchange of
signatures. Journal of Cryptology 8(4), 201–222 (1995)

10. Garay, J.A., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol
design: Cryptography against incentive-driven adversaries. In FOCS 2013. IEEE
(2013)

11. Garay, J.A., Katz, J., Tackmann, B., Zikas, V.: How fair is your protocol? A utility-
based approach to protocol optimality. In: Spirakis, P. (ed.) PODC 2015. ACM
Press (2015)

12. Garay, J.A., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 404–428. Springer (2006)

13. Garay, J.A., Tackmann, B., Zikas, V.: Fair distributed computation of reactive
functions. Cryptology ePrint Archive, Report 2015/807 (August 2015)

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game—A com-
pleteness theorem for protocols with honest majority. In STOC ’87. pp. 218–229.
ACM (1987)

15. Gordon, D., Katz, J.: Partial fairness in secure two-party computation. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer (2010)

16. Groce, A., Katz, J.: Fair computation with rational players. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer
(2012)

17. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013)

18. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)

19. Yao, A.C.: Theory and applications of trapdoor functions. In FOCS ’82. pp. 80–91.
IEEE (1982)

