
How Fair is Your Protocol?
A Utility-based Approach to Protocol Optimality

Juan Garay
Yahoo Labs

garay@yahoo-inc.com

Jonathan Katz
University of Maryland
jkatz@cs.umd.edu

Björn Tackmann
∗

UC San Diego
btackmann@eng.ucsd.edu

Vassilis Zikas
†

ETH Zurich
vzikas@inf.ethz.ch

ABSTRACT
Security of distributed cryptographic protocols usually re-
quires privacy (inputs of the honest parties remain hidden),
correctness (the adversary cannot improperly affect the out-
come), and fairness (if the adversary learns the output, all
honest parties do also). Cleve’s seminal result (STOC ’86)
implies that satisfying these properties simultaneously is im-
possible in the presence of dishonest majorities, and led to
several proposals for relaxed notions of fairness.

In this work we put forth a new approach for defining re-
laxed fairness guarantees that allows for a quantitative com-
parison between protocols with regard to the level of fairness
they achieve. The basic idea is to use an appropriate util-
ity function to express the preferences of an adversary who
wants to violate fairness. We also show optimal protocols
with respect to our notion, in both the two-party and multi-
party settings.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection

General Terms
Security, Theory

1. INTRODUCTION
Two parties p1 and p2 wishing to sign a contract are con-

sidering the following two protocols, Π1 and Π2 (communi-
cation is done over secure channels):

∗Research partly done at ETH Zurich and while visiting
University of Maryland.
†Research partly done at University of Maryland and UCLA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3617-8 /15/07 ...$15.00.
http://dx.doi.org/10.1145/2767386.2767431.

• In Π1, p1 and p2 locally digitally sign the contract,
compute commitments c0 and c1 on the signed ver-
sions, and exchange these commitments. Subsequently,
p1 opens its commitment to p2, and then p2 opens his
commitment to p1. If during any of the above steps pi,
i ∈ {1, 2}, observes that p3−i sends him an inconsistent
message, then he aborts.

• Π2 starts off similarly to Π1, except that to determine
who opens his commitment first, the parties execute
a coin tossing protocol [4]: p1 and p2 locally commit
to random bits b1 and b2, exchange the commitments,
and then in a single round they open them. For each
pi, if the opening of b3−i is valid then pi computes
b = b1 ⊕ b2; otherwise pi aborts. The parties then
use b to determine which party opens the committed
signed contract first.

Which protocol should the parties use? Intuitively, and
assuming a party is honest, the answer should be clear: Π2,
since the cheating capabilities of a corrupt party are reduced
in comparison to Π1. Indeed, the probability of a corrupted
pi forcing an unfair abort (i.e., receiving the contract signed
by p3−i while preventing p3−i from also receiving it) in pro-
tocol Π2 is roughly half of the probability in protocol Π1.
In other words, one would simply say that protocol Π2 is
“twice as fair as” protocol Π1.

Yet, most existing cryptographic security definitions, in-
cluding those specifically intended to model relaxed notions
of fairness in an effort to circumvent Cleve’s impossibility
result [10], would simply say that both protocols are unfair
and make no further statement about their relative fairness.
For example, both protocols would be considered unfair with
respect to resource fairness [16], which formalizes the intu-
ition of the gradual release paradigm [4, 2, 11, 5, 23] in a
simulation-based framework. Indeed, a resource-fair proto-
col should ensure that, upon abort, the amount of compu-
tation that the honest party needs for producing the output
is comparable to the adversary’s for the same task; this is
clearly not the case for either of the protocols, as with prob-
ability at least one-half the adversary might learn the output
(i.e., receive the signed contract) when it is infeasible for the
other party to compute it. The same holds for“rational”def-
initions of fairness [1, 20], which require the protocol to be
an equilibrium strategy with respect to a preference/utility
function for rational agents. We stress that some of these
definitional frameworks show that one can construct pro-

tocols that are fair with respect to the given framework;
nevertheless, none of them provide a way to quantify the
“amount” of fairness achieved by an arbitrary cryptographic
protocol.

Motivated by the above observation, in this paper we put
forth quantitative definitions of fairness for two-party and
multi-party protocols. Our notions are based on the idea
that we can use an appropriate utility function to express
the preferences of an adversary who wants to break fairness.
Our definitions allow for comparing protocols with respect to
how fair they are, placing them in a partial order according
to a relative-fairness relation. We then investigate the ques-
tion of finding maximal elements in this partial order (which
we refer to as optimally fair protocols) for the case of two-
party and multi-party secure function evaluation (SFE). Im-
portantly, our quantitative fairness and optimality approach
is fully composable (cf. [8]) with respect to standard secure
protocols, in the sense that we can replace a “hybrid” in a
fair/optimal protocol with a protocol which securely imple-
ments it without affecting its fairness/optimality.

Our approach builds on machinery developed in the re-
cently proposed Rational Protocol Design (RPD) framework,
by Garay et al. [14]. In more detail, [14] describes how to
design protocols which keep the utility of an attacker aim-
ing at provoking certain security breaches as low as possible.
At a high level, we use RPD as follows: first, we specify the
class of utility functions that naturally capture an adver-
sary attacking a protocol’s fairness, and then we interpret
the actual utility that the best attacker (i.e., the one maxi-
mizing its respective utility) obtains against a given protocol
as a measure of the protocol’s fairness. The more a protocol
limits its best attacker with respect to our fairness-specific
utility function, the fairer the protocol is. Going back to the
Π1 vs. Π2 example at the beginning of the section, we can
now readily use this utility function to formally express that
protocol Π2 is fairer than protocol Π1, because Π1 allows
the adversary to always obtain maximum utility, whereas
Π2 reduces this utility by a factor of 1/2.

Related work. There is a considerable amount of work on
fairness, and on defining relaxed notions of fairness. After
Cleve’s impossibility result [10], perhaps the most notable
line of work is on “gradual release” of information [4, 2, 11,
5, 23, 16]. More recently, Gordon and Katz [18] proposed
the notion of 1/p-security. Roughly, their definition guar-
antees that fairness holds except with probability 1/p, for
some specified polynomial p. One could adopt the param-
eter p as a measure of a protocol’s fairness, although Gor-
don and Katz show some fundamental limits regarding what
functions can be securely computed with regard to their def-
inition. In our work we design protocols for evaluating arbi-
trary functions. At a definitional level, we observe that our
definition always (except with negligible probability) guar-
antees privacy and correctness, which (as already pointed
out by Gordon and Katz) is not the case for 1/p-security;
see Section 5. Interestingly, we also show that for an appro-
priate choice of the utility function, our utility-based fairness
notion implies 1/p-security for some p.

A different line of work tries to capture relaxed notions
of fairness by assuming that protocol participants are ra-
tional agents with a fairness-related utility function [1, 20].
This approach is incomparable to ours, or to any other ex-
isting notion of fairness in the non-rational setting where
the honest parties are not rational and follow the protocol

as specified. In particular, the optimal protocols suggested
here (and in other fairness notions in the non-rational set-
ting) do not imply an equilibrium in the sense of [1, 20].1

We stress also that the definitions from [1, 20] do not imply
a comparative notion of fairness, as a protocol either induces
an equilibrium or it does not.

Organization of the paper. The remainder of the paper
is organized as follows. In Section 2 we describe notation and
the very basics of the RPD framework [14] that are needed
for understanding and evaluating our results. In Section 3
we define the utility function of attackers who aim to violate
fairness, which enables the relative assessment of protocols
as well as the notions of “optimal” fairness which we use
in this work. In Section 4 we present optimally fair proto-
cols for two-party and multi-party (n > 2 parties) secure
function evaluation (SFE) (Sections 4.1 and 4.2, resp.) Our
protocols are not only optimally fair but also optimal with
respect to the number of reconstruction rounds—a measure
formalized here which has been implicit in the fairness lit-
erature. Furthermore, for the case of multi-party SFE, we
also provide an alternative (incomparable) notion of opti-
mality that relates to how costly corruptions might be for
the adversary.2 Finally, in Section 5 we compare our utility-
based fairness notion to 1/p-security (aka “partial fairness”)
as developed by Gordon and Katz [18]. Detailed construc-
tions, proofs, and other complementary material appear in
the full version of this work [15].

2. PRELIMINARIES
We first establish some notational conventions. For an

integer n ∈ N, the set of positive numbers smaller or equal to
n is [n] := {1, . . . , n}. In the context of two-party protocols,
we will always refer to the parties as p1 and p2, and for
i ∈ {1, 2} the symbol ¬i refers to the value 3−i (so p¬i 6= pi).
Most statements in this paper are actually asymptotic with
respect to an (often implicit) security parameter k ∈ N.
Hence, f ≤ g means that ∃k0 ∀k ≥ k0 : f(k) ≤ g(k), and
a function µ : N → R is negligible if for all polynomials
p, µ ≤ 1/p, and noticeable if there exists a polynomial p

with µ ≥ 1/p. We further introduce the symbols f
negl

≈ g :⇔

∃ negligible µ : |f − g| ≤ µ, and f
negl

≥ g :⇔ ∃ negligible µ :

f ≥ g − µ, with
negl

≤ defined analogously.
For the model of protocol composition, we follow Canetti’s

adaptive simulation-based model for multi-party computa-
tion [6]. The protocol execution is formalized by collections
of interactive Turing machines (ITMs); the set of all effi-
cient ITMs is denoted by ITM. We generally denote our pro-
tocols by Π and our (ideal) functionalities (which are also
referred to as the trusted party [6]) by F both with descrip-
tive super- or subscripts, the adversary by A, the simula-
tor by S, and the environment by Z. The random variable
ensemble {execΠ,A,Z(k, z)}k∈N,z∈{0,1}∗ , which is more com-
pactly often written as execΠ,A,Z , describes the contents of
Z’s output tape after an execution with Π, F, and A, on
auxiliary input z ∈ {0, 1}∗.

1We note in passing that our protocols do, in fact, imply an
equilibrium, but in the attack “meta-game” defined in [14].
Interested readers are referred to [14] for more details.
2Secure multi-party computation with costly corruptions
was first studied in [13].

Rational Protocol Design. Our results utilize the Ratio-
nal Protocol Design (RPD) framework [14]. Here we review
the basic elements that are needed to motivate and express
our definitions and results; we refer to the framework pa-
per [14] for further details. In RPD, security is defined via
a two-party sequential zero-sum game with perfect informa-
tion, called the attack game, between a protocol designer D

and an attacker A. The designer D plays first by specify-
ing a protocol Π for the (honest) participants to run; subse-
quently, the attacker A, who is informed about D’s move (i.e.,
learns the protocol) plays by specifying a polynomial-time
attack strategy A by which it may corrupt parties and try to
subvert the execution of the protocol (uncorrupted parties
follow Π as prescribed). Note that it suffices to define the
utility uA of the adversary as the game is zero-sum. (The
utility uD of the designer is then −uA.)

The utility definition relies on the simulation paradigm3

in which a real-world execution of protocol Π in the pres-
ence of attack strategy (or adversary) A is compared to an
ideal-world execution involving an ideal-world attack strat-
egy (that is, a simulator S) interacting with a functionality
F which models the task at hand. Roughly speaking, the
requirement is that the two worlds be indistinguishable to
any environment Z which provides the inputs and obtains
the outputs of all parties, and interacts arbitrarily with the
adversary A.

For defining the utilities in RPD, however, the real world
is compared to an ideal world in which S gets to interact with
a relaxed version of the functionality which, in addition to
implementing the task as F would, also allows the simulator
to perform the attacks we are interested in capturing. For
example, an attack to the protocol’s correctness is modeled
by the functionality allowing the simulator to modify the
outputs (even of honest parties). Given such a functionality,
the utility of any given adversary is defined as the expected
utility of the best simulator for this adversary, where the
simulator’s utility is defined based on which weaknesses of
the ideal functionality the simulator is forced to exploit.

3. UTILITY-BASED FAIRNESS AND PRO-
TOCOL OPTIMALITY

In this section, we make use of the RPD framework to
introduce a natural fairness relation (partial order) to the
space of efficient protocols. Specifically, we consider an in-
stantiation of RPD with an attacker who obtains utility for
violating fairness. The RPD machinery can be applied to
most simulation-based security frameworks; however, for the
sake of clarity we restrict ourselves to the technically simpler
framework of Canetti [6] (allowing sequential and modular
composition), which considers synchronous protocols with
guaranteed termination. Our definitions can be extended
to Universally Composable (UC) security [7] using the ap-
proach of Katz et al. [21] to model terminating synchronous
computation in UC.

Now to our approach. We follow the three-step process
described in [14] for specifying an adversary’s utility, instan-
tiating this process with parameters that capture a fairness-
targeted attacker:

3In RPD the statements are formalized in Canetti’s Uni-
versal Composition (UC) framework [7]; however, one could
in principle use any other simulation-based model such as
Canetti’s MPC framework [6].

Step 1: Relaxing the ideal experiment to allow at-
tacks on fairness. First, we relax the ideal world to allow
the simulator to perform fairness-related attacks. In partic-
ular, we consider the experiment corresponding to standard
ideal SFE with abort experiment [6, 17] with the difference
that the simulator only receives the outputs of corrupted
parties if he asks for them (we denote the corresponding
trusted-party/functionality as F⊥sfe). In a nutshell, F⊥sfe is
similar to standard SFE but allows the simulator to ask for
corrupted parties’ outputs, and, subsequently, to send F⊥sfe
a special (abort)-message even after having received these
outputs (but before some honest parties receive the output).
Upon receiving such an abort message, the functionality sets
the output of every (honest) party to ⊥. We refer to the
above ideal world as the F⊥sfe-ideal world. We point out that
the functionality F⊥sfe is as usually parametrized by the ac-
tual function f to be evaluated; when we want to make this
function f explicit we will write Ff,⊥sfe .

Step 2: Events and payoffs. Next, we specify a set of
events in the experiment corresponding to the ideal evalua-
tion of F⊥sfe which capture whether or not a fairness breach
occurs, and assign to each such event a “payoff” value cap-
turing the severity of provoking the event. The relevant
questions to ask with respect to fairness are:

1. Does the adversary learn“noticeable”information about
the output of the corrupted parties?

2. Do honest parties learn their output?

The events used to describe fairness correspond to the four
possible combinations of answers to the above questions. In
particular, we define the events indexed by a string ij ∈
{0, 1}2, where i (resp., j) equals 1 if the answer to the first
(resp., second) question is yes and 0 otherwise. The events
are then as follows:

E00: The simulator does not ask functionality F⊥sfe for any of
the corrupted parties’ outputs and instructs it to abort
before all honest parties receive their output. (Thus,
neither the simulator nor the honest parties will receive
their outputs.)

E01: The simulator does not ask F⊥sfe for any of the cor-
rupted parties’ outputs and does not abort. (When
the protocol terminates, then only the honest parties
will receive the output. This event also accounts for
cases where the adversary does not corrupt any party.)

E10: The simulator asks F⊥sfe for some corrupted party’s
output and instructs it to abort before any honest
party receives the output.

E11: The simulator asks F⊥sfe for some corrupted party’s
output and does not abort. (When the protocol ter-
minates, both the honest parties and the simulator
will receive their outputs. This event also accounts
for cases where the adversary corrupts all parties.)

We remark that our definition does not give any advantage
to an adversary corrupting all parties. This is consistent
with the intuitive notion of fairness, as when there is no
honest party, the adversary has nobody to gain an unfair
advantage over.

To each of the events Eij we associate a real-valued payoff
γij which captures the adversary’s utility when provoking

this event. Thus, the adversary’s payoff is specified by vector
~γ = (γ00, γ01, γ10, γ11), corresponding to events ~E = (E00,
E01, E10, E11).

Finally, we define the expected payoff of a given simulator
S (for an environment Z) to be4:

U
F⊥sfe,~γ
I (S,Z) :=

∑
i,j∈{0,1}

γij Pr[Eij]. (1)

Step 3: Defining the attacker’s utility. Given the ex-

pected payoff U
F⊥sfe,~γ
I (S,Z), the utility uA(Π,A) for a pair

(Π,A) is defined following the methodology in [14] as the
expected payoff of the best simulator5 that simulates A in
the F⊥sfe-ideal world in presence of the least favorable envi-
ronment, i.e., the one that is most favorable to the attacker.
To make the payoff vector ~γ explicit, we sometimes denote

the above utility as ÛΠ,F⊥sfe,~γ(A) and refer to it as the payoff
of strategy A (for attacking Π).

More formally, for a protocol Π, denote by SIMA the class
of simulators forA, i.e, SIMA = {S ∈ ITM | ∀Z : execΠ,A,Z ≈
execF⊥sfe,S,Z}. The payoff of strategy A (for attacking Π) is
then defined as:

uA(Π,A) := ÛΠ,F⊥sfe,~γ(A) := sup
Z∈ITM

inf
S∈SIMA

{UF
⊥
sfe,~γ

I (S,Z)}.

(2)
To complete our formalization, we now describe a natural

relation among the values in ~γ which is both intuitive and
consistent with existing approaches to fairness, and which we
will assume to hold for the remainder of the paper. Specifi-
cally, we will consider attackers whose least preferred event
is that the honest parties receive their output while the at-
tacker does not, i.e., we assume that γ01 = minγ∈~γ{γ}. Fur-
thermore, we will assume that the attacker’s favorite choice
is that he receives the output and the honest parties do not,
i.e., γ10 = maxij∈{0,1}2{γij}. Lastly, we point out that for
an arbitrary payoff vector ~γ, one can assume without loss of
generality that any one of its values equals zero, and, there-
fore, we can set γ01 = 0. This can be seen immediately
by setting γ′ij = γij − γ01. We denote the set of all pay-

off vectors adhering to the above restrictions by Γfair ⊆ R4.
Summarizing, our fairness-specific payoff (“preference”) vec-
tor ~γ satisfies

0 = γ01 ≤ min{γ00, γ11} and max{γ00, γ11} < γ10.

Optimally fair protocols. We are now ready to define our
partial order relation for protocols with respect to fairness.
Informally, a protocol Π will be at least as fair as another
protocol Π′ if the utility of the best adversary A attacking
Π (i.e, the adversary which maximizes uA(Π,A)) is no larger
than the utility of the best adversary attacking Π′ (except
for some negligible quantity). Our notion of fairness is with
respect to the above natural class Γfair; for conciseness, we
will abbreviate and say that a protocol is “~γ-fair,” for ~γ ∈
Γfair. Formally:

Definition 1. Let Π and Π′ be protocols, and ~γ ∈ Γfair

be a preference vector. We say that Π is at least as fair as

4Refer to [14, Section 2] for the rationale behind this formu-
lation.
5The best simulator is taken to be the one that minimizes
his payoff [14].

Π′ with respect to ~γ (i.e., it is at least as ~γ-fair), denoted

Π
~γ

� Π′, if

sup
A∈ITM

uA(Π,A)
negl

≤ sup
A∈ITM

uA(Π
′,A). (3)

We will refer to a protocol which is a maximal element
according to the above fairness relation as an optimally fair
protocol.

Definition 2. Let ~γ ∈ Γfair. A protocol Π is optimally
~γ-fair if it is at least as ~γ-fair as any other protocol Π′.

Definition 2 presents our most basic notion of utility-based
fairness. With foresight, one issue that arises with this def-
inition in the multi-party setting is that it is not sensitive
to the number of corrupted parties, so when an adversary
is able to corrupt parties for free, he is better off corrupting
all n − 1 parties. In Section 4.2 we also present an alter-
native notion of fairness suitable for situations where the
number of corrupted parties does matter, as, for example,
when corrupting parties carries some cost (cf. [13]).

4. UTILITY-BASED FAIR SFE
In this section we investigate the question of finding opti-

mally ~γ-fair protocols for secure two-party and multi-party
function evaluation, for any ~γ ∈ Γfair. (Recall that Γfair is
a class of natural preference vectors for fairness—cf. Sec-
tion 3.) In addition, for the case of multi-party protocols,
we also suggest an alternative, incomparable notion of fair-
ness that is sensitive to the number of corrupted parties and
is therefore relevant when this number is an issue. As we
describe our protocols in the model of [6], the protocols are
synchronous and parties communicate with each other via
bilateral secure channels. We point out that the protocols
described here are secure against adaptive adversaries [9].

4.1 The Two-Party Setting
In this section we present an optimally ~γ-fair protocol,

ΠOpt
2SFE, for computing any given function. Its optimality is

established by proving a general upper bound on the utility
uA(Π,A) of an adversary A attacking it, and then present-
ing a specific function f and an adversary who attacks the
protocol ΠOpt

2SFE for computing f that obtains a utility which
matches the above upper bound.

4.1.1 The Protocol (Upper Bound)
Our protocol makes use of a well-known cryptographic

primitive called authenticated secret sharing. An authenti-
cated additive (two-out-of-two) secret sharing scheme is an
additive sharing scheme augmented with a message authen-
tication code (MAC) to ensure verifiability. (See the Ap-
pendix for a concrete instantiation.) Protocol ΠOpt

2SFE works
in two phases as follows; f denotes the function to be com-
puted:

1. In the first phase, ΠOpt
2SFE invokes an adaptively secure

unfair SFE protocol (e.g., the protocol in [17]—call it
ΠGMW)6 to compute the following function f ′: f ′ takes
as input the inputs of the parties to f , and outputs an
authenticated sharing of the output of f along with an

6Note that assuming ideally secure channels, the protocol
ΠGMW is adaptively secure [9].

index i ∈R {1, 2} chosen uniformly at random. In case
the protocol aborts, the honest party takes a default
value as the input of the corrupted party and locally
computes the function f .

2. In the second phase, if ΠGMW did not abort, the pro-
tocol continues in two more rounds. In the first round,
the output (sharing) is reconstructed towards pi, and
in the second round it is reconstructed towards p¬i. In
case p¬i does not send a valid share to pi in the first
round, pi again takes a default value as the input of
the (corrupted) party p¬i and computes the function f
locally (the second round is then omitted).

As we show in the following theorem, the adversary’s pay-
off in the above protocol is upper-bounded by γ10+γ11

2
. The

intuition behind the proof is as follows: If the adversary
corrupts the party that first receives the output, then he
can provoke his most preferred event E10 by aborting before
sending his last message. However, because this party is
chosen at random, this happens only with probability 1/2;
with the remaining 1/2 probability the honest party receives
the output first, in which case the best choice for the adver-
sary is to allow the protocol to terminate and provoke the
event E11.

Without loss of generality, we assume that the function f
has a single global output; indeed, a protocol that can com-
pute any such function f can be easily extended to compute
functions with multiple, potentially private outputs by using
standard techniques, e.g., see [22].

Theorem 3. Let ~γ ∈ Γfair and A be an adversary. Then

uA(Π
Opt
2SFE,A)

negl

≤ γ10+γ11
2

.

Proof (sketch). We prove the statement for ΠOpt
2SFE in

the Ff
′,⊥

sfe -hybrid model. The theorem then follows by apply-
ing the RPD composition theorem [14, Theorem 5], which
extends to the case where the framework is instantiated with
the model of Canetti [6].

First we remark that if the adversary corrupts both par-
ties or no party, then the theorem follows directly from the
definition of the payoff and the properties of Γfair, as in these
cases the payoff the adversary obtains equals γ11 or γ01, re-
spectively. Assume for the remainder of the proof that the
adversary corrupts p1 (the case where the adversary corrupts
p2 is dealt with symmetrically). To complete the proof it suf-
fices to provide a simulator SA for any adversary A, such
that SA has expected payoff at most γ10+γ11

2
. Such a (black-

box straight-line) simulator SA for an adversary A works as
follows.

To emulate the output of Ff
′,⊥

sfe , SA does the following
(recall that the output consists of a share for p1 and a uni-
formly chosen index i ∈ {1, 2}): SA randomly picks an index

î ∈R {1, 2} along with the element ŝ1, k̂1 and a random
MAC-tag t̂2; SA hands to the adversary the (simulated)

share (ŝ1, t̂2), the key k̂1, and the index î. Subsequently,
SA simulates the opening stage of ΠOpt

2SFE:

• If î = 1, then SA sends x̂1 (which it obtained because

of the Ff
′,⊥

sfe -hybrid model) to Ff,⊥sfe and asks for the
output7; let y denote this output. SA computes a share
for p2 which, together with the simulated share of p1,

7Recall that we assume wlog that f has one global output.

results in a valid sharing of y, as follows: set t′1 :=
tag(y, k̂1) and t′2 := tag(y, k̂2) for a uniformly chosen

k2. Set ŝ2 := (y, t′1, t
′
2)−s1 and t̂1 := tag(ŝ2, k̂1). Send

(ŝ2, t̂1) to p1 for reconstructing the sharing of y. In the
next round, receive from A p1’s share; if SA receives a
share other than (ŝ1, t̂2), then it sends abort to Ff,⊥sfe ,
before the honest party is allowed to receive its output.

• If î = 0 then SA receives from A p1’s share. If SA
receives a share other than (ŝ1, t̂2), then it sends a

default value to Ff,⊥sfe (as p1’s input). Otherwise, it

asks Ff,⊥sfe for p1’s output y, and computes a share
for p2 which, together with the simulated share of p1,
results in a valid sharing of y (as above). SA sends
this share to A.

It is straightforward to verify that SA is a good simula-
tor for A, as the simulated keys and shares are distributed
identically to the actual sharing in the protocol execution.

We now argue that for any adversary A corrupting p1,
the payoff of SA is (at most) γ10+γ11

2
+µ for some negligible

function µ. If A makes the evaluation of the function f ′ in
the first phase to abort, the simulator sends Ff,⊥sfe a default
input and delivers to the honest party, which provokes the
event E01; hence the payoff of this adversary will be γ01 <
γ10+γ11

2
. Otherwise, i.e., if A allows the parties to receive

their f ′-outputs/shares in the first phase, then we consider

the following two cases: (1) if î = 1 (i.e., the corrupted
party gets the value first), then A can always provoke his
most preferred event by receiving the output in the first
round of the opening stage and then aborting, which will
make SA provoke the event E10. (2) if î = 2 the adversary’s
choices are to provoke the events E01 or E11, out of which his
more preferred one is E11. Because î is uniformly chosen,
each of the cases (1) and (2) occurs with probability 1/2;
hence, the payoff of the adversary is γ10+γ11

2
+µ (where the

negligible quantity µ comes from the fact that there might
be a negligible error in the simulation of SA). Therefore, in
any case the utility of the attacker choosing adversary A is

uA(Π
Opt
2SFE,A)

negl

≤ γ10+γ11
2

which concludes the proof.

4.1.2 Optimality of the Protocol (Lower Bound)
Next, we show that the above bound is tight for proto-

cols that evaluate arbitrary functions. We remark that, for
specific classes of functions—such as those with polynomial-
size range or domain—one is able to obtain fairer protocols.
For example, it is easy to verify that for functions which
admit 1/p-secure solutions [18] for an arbitrary polynomial
p, we can reduce the upper bound in Theorem 3 to γ10+γ11

p
.

(Refer to Section 5 for a detailed comparison of our notion
to 1/p-security). Thus, an interesting future direction is to
find optimally fair solutions for computing primitives such
as random selection [19] and set intersection [12] which could
then be used in higher-level constructions.

The general result shows that there are functions for which
γ10+γ11

2
is also a lower bound on the adversary’s utility for

any protocol, independently of the number of rounds. Here
we prove this for the particular“swap”function fswp(x1, x2) =
(x2, x1); the result carries over to a large class of functions
(essentially those where 1/p-security is proved impossible
in [18]).

At a high level, the proof goes as follows: First, we ob-
serve that in any protocol execution there must be one round

(for each of the parties pi) in which pi “learns the output of
the evaluation.” An adversary corrupting one of the parties
at random has probability 1/2 of corrupting the party that
receives the output first; in that case the adversary learns
the output and can abort the computation, forcing the other
party to not receive it, which results in a payoff γ10. With
the remaining 1/2 probability, the adversary does not cor-
rupt the correct party. In this case, finishing the protocol
and obtaining payoff γ11 is the best strategy.8

We first show an intermediate result, where we consider
two specific adversarial strategiesA1 andA2, which are valid
against any protocol. In strategy A1, the adversary (stati-
cally) corrupts p1, and proceeds as follows: In each round
`, receive all the messages from p2. Check whether p1 holds
his actual output (A1 generates a copy of p1, simulates to
this copy that p2 aborted the protocol, obtains the output
of p1 and checks whether the output of p1 is the default
output—this strategy works since the functionality is secure
with abort); if so, record the output and abort the execution
before sending p1’s `-round message(s).9 Otherwise, let p1

correctly execute its instructions for round `. The strategy
A2 is defined analogously with roles for p1 and p2 exchanged.

Lemma 4. Let fswp be the swap function, A1 and A2 be
the strategies defined above, and ~γ ∈ Γfair. Every protocol Π

which securely realizes functionality Ffswp,⊥sfe satisfies:

uA(Π,A1) + uA(Π,A2)
negl

≥ γ10 + γ11.

Proof (sketch). For i ∈ {1, 2} we consider the envi-
ronment Zi that is executed together with Ai corrupting pi.
The environment Zi will choose a fixed value x¬i, which it
provides as an input to p¬i.

For compactness, we introduce the following two events in
the protocol execution: We denote by L the event that the
adversary aborts in a round where the honest party holds
the actual output (in other words the honest party’s output
is “locked”), and by L̄ the event that the adversary aborts at
a round where the honest party does not hold the actual out-
put (i.e., if the corrupt party aborts, the honest party out-
puts some value other than f(x1, x2)). Observe that, in cases
corresponding to the real-world event L̄, with overwhelming
probability the simulator needs to send to the functionality
the “abort” messages, provoking γ10; indeed, because Π is
secure with abort, in that case p¬i needs to output ⊥ with
overwhelming probability (otherwise, there is a noticeable
probability that he will output a wrong value, which contra-
dicts security with abort of Π). On the other hand, in cases
corresponding to L, the simulator must (with overwhelming

probability) allow p¬i to obtain the output from Ff,⊥sfe , pro-
voking the event γ11. Hence, except with negligible error,
the adversary obtains γ11 and γ10 for provoking the events
L and L̄, respectively. Therefore, the payoff of these ad-
versaries is (at least) γ11 Pr[L] + γ10 Pr[L̄] − µ′′, where µ′′

is a negligible function (corresponding to the difference in
the payoff that is created due to the simulation error of the
optimal simulator).

To complete the proof, we compute the probability of each
of the events L and L̄ for A1 and A2. One important obser-
vation for both strategiesA1 andA2, the adversary instructs
8The adversary could also obtain γ01 by aborting, but
will not play this strategy as, by assumption, γ01 ≤
min{γ00, γ11}.
9This attack is possible because the adversary is rushing.

the corrupted party to behave honestly until the round when
it holds the actual output, hence all messages in the protocol
execution have exactly the same distribution as in an honest
execution until that round. For each party pi, the protocol
implicitly defines the rounds in which the output of honest,
hence also of honestly behaving, parties are“locked.” In such
an execution, let Ri denote the first round where pi holds
the actual output. There are two cases: (i) R1 = R2 and (ii)
R1 6= R2. In case (i), both A1 and A2 provoke the event L̄.
In case (ii), if R1 < R2, then A1 always provokes the event
L̄, while for A2, with some probability (denoted as qL̄), the
honest party does not hold the actual output when the A2

aborts, and with probability 1−qL̄ it does.10 (Of course, the
analogous arguments with switched roles hold for R1 > R2.

For the particular adversaries A1 and A2, the considered
values R1 and R2 are indeed relevant, since the adversaries
both use the honest protocol machine as a “black box” until
it starts holding the output. The probability of L̄ for A1

is Pr[R1 = R2] + Pr[R1 < R2] · (1 − qL), and the overall
probability of L is Pr[R1 < R2] · qL + Pr[R1 < R2], the
probabilities for A2 are analogous. Hence, we obtain

uA(Π,A1) + uA(Π,A2)

≥ γ11 PrA1 [L] + γ10 PrA1 [L̄] + γ11 PrA2 [L] + γ10 PrA2 [L̄]

≥ γ10 · (2 · Pr[R1 = R2] + (1 + qL̄) · Pr[R1 6= R2])

+ γ11 · (1− qL̄) · Pr[R1 6= R2]

≥ γ10 · (Pr[R1 = R2] + Pr[R1 < R2] + Pr[R1 > R2])

+ γ11 · (Pr[R1 = R2] + Pr[R1 < R2] + Pr[R1 > R2])

≥ γ10 + γ11 − µ,

which was exactly the statement we wanted to prove.

Lemma 4 provides a bound involving two adversaries. (It
can be viewed as a statement that “one of A1 and A2 must
be good”). However, we can use it to prove our lower bound
on the payoff by considering the single adversarial strategy,
call it Agen, that is the “mix” of the two strategies A1 and
A2 described above: The adversary corrupts one party cho-
sen at random, checks (in each round) whether the protocol
would compute the correct output on abort, and stops the
execution as soon as it obtains the output. In the sequel,
for a given function f we say that a protocol securely real-
izes the functionality Ff,⊥sfe if it securely evaluates f in the
Ff,⊥sfe -ideal world.

Theorem 5. Let ~γ ∈ Γfair, fswp be the swap function.
There exists an adversary A such that for every protocol

Π which securely realizes functionality Ffswp,⊥sfe , it holds that

uA(Π,A)
negl

≥ γ10+γ11
2

.

Proof. Let A be the adversary Agen described above.
As adversary Agen chooses one of the strategies A1 or A2

uniformly at random, it obtains the average of the utilities
of A1 and A2. Indeed, using Lemma 4, we obtain

uA(Π,Agen) =
1

2
·uA(Π,A2)+

1

2
·uA(Π,A2)

negl

≥ 1

2
·(γ10+γ11−µ),

which completes the proof.

10The reason is that we don’t exclude protocols in which the
output of a party which has been “locked” in some round
gets “unlocked” in a future round.

The above theorem establishes that ΠOpt
2SFE is optimally

γ-fair. We also remark that the protocol is optimal with
respect to the number of reconstruction rounds. See Ap-
pendix 4.1.3 for details. Next, we consider multi-party SFE
(i.e., n > 2).

4.1.3 Round Complexity of the Reconstruction Phase
Most, if not all, protocols in the literature designed to

achieve a (relaxed) notion of fairness have a similar struc-
ture: They first invoke a general (unfair) SFE protocol for
computing a sharing of the output, and then proceed to a
reconstruction phase where they attempt to obtain the out-
put by reconstructing this sharing. Since the first (unfair
SFE) phase is common in all those protocols, the number of
rounds of the reconstruction phase is a reasonable complex-
ity measure for such protocols.

As we show below, protocol ΠOpt
2SFE is not only optimally ~γ-

fair but is also optimal with respect to the number of recon-
struction rounds, i.e., the number of rounds it invokes after
the sharing of the output has been generated. To demon-
strate this we first provide a formal definition of reconstruc-
tion rounds. Note that also the notion of reconstruction
rounds is implicit in many works in the fairness literature,
to our knowledge, a formal definition such as the one de-
scribed here has not been provided elsewhere.

Intuitively, a protocol has ` reconstruction rounds if up to
` rounds before the end, the adversary has not gained any
advantage in learning the output, but the next round is the
one where the reconstruction starts. Formally,

Definition 6. Let Π be an SFE protocol for evaluating
the (multi-party) function f : ({0, 1}∗)n → ({0, 1}∗)n which
terminates in m rounds. We say that Π has ` reconstruction-
rounds if it implements the (fair) functionality Ffsfe in the
presence of any adversary who aborts in any of the rounds
1, . . . ,m−`, but does not implement it if the adversary aborts
in round m− `+ 1.

Lemma 7. ΠOpt
2SFE has two reconstruction rounds.

Proof (sketch). The security of the protocol used in
phase 1 of ΠOpt

2SFE and the privacy of the secret sharing, en-
sures that the view of the adversary during this phase (in-
cluding his output) can be perfectly simulated without ever
involving the functionality. Thus if the adversary corrupt-
ing, say, p1 (the case of a corrupted p2 is symmetric) aborts
during this phase, then p2 can simply locally evaluate the
function on his input and a default input by the adversary.
To simulate this, the simulator will simply hand the default
input to the fair functionality. However, as implied by the
lower bound in Theorem 5, this is not the case if the adver-
sary aborts in the first round of phase 2.

Lemma 8. Assuming ~γ ∈ Γfair, there exists no optimally
~γ-fair protocol for computing the swap function fswp (see
Lemma 4) with a single reconstruction round.

Proof (sketch). Assume towards contradiction that a
protocol Π with a single reconstruction round exists. Clearly,
before the last round the output should not be “locked” for
neither of the parties. Indeed, if this is the case the adversary
corrupting this party can, as in the proof of Lemma 4, force

an unfair abort which cannot be simulated in the Ffswpsfe -ideal
model. Now, in the (single) reconstruction round, a rush-
ing adversary receives the message from the honest party

but does not send anything, which can only be simulated
by making the honest party abort. This adversary obtains
maximum payoff, γ10 (except with negligible probability).
Thus Π is less ~γ-fair than ΠOpt

2SFE and hence is not optimally
~γ-fair.

4.2 The Multi-Party Setting
Throughout this section, we make the simplifying assump-

tion that the attacker prefers learning the output over not
learning it, i.e., γ00 ≤ γ11. Although this assumption is
natural and standard in the rational fairness literature, it
is not without loss of generality. It is, however, useful in
proving multi-party fairness statements, as it allows us to
compute the utility of the attacker for a protocol which is
fully secure for Fsfe, including fairness. Indeed, while such
a protocol might still allow the attacker to abort and hence
obtain utility γ00, in this case the optimal utility is γ11

as the event E11 is the “best” event which A can provoke.
Combined with the inequalities from Section 3, the entries
in vector ~γ satisfy 0 = γ01 ≤ γ00 ≤ γ11 < γ10. We denote
by Γ+

fair ⊆ Γfair the class of payoff vectors with the above
restriction.

The intuition behind protocol ΠOpt
2SFE can be extended to

also work in the multi-party (n > 2) setting. The idea for
the corresponding multi-party protocol ΠOpt

nSFE, which is de-
scribed below in more detail, is as follows: In a first phase,
ΠOpt

nSFE computes the private output function f ′(x1, . . . , xn) =
(y1, . . . , yn), where for some random i∗ ∈ [n], yi∗ equals the
output of the function f we wish to compute, whereas for
all i ∈ [n] \ {i∗}, yi = ⊥; in addition to yi, every party pi
receives an authentication tag on yi.

11 If this phase aborts
then the protocol also aborts. In phase 2, all parties an-
nounce their output yi (by broadcasting them). If a validly
authenticated message y 6= ⊥ is broadcast, then the parties
adopt it; otherwise, they abort.

Functionality 〈Ff,⊥priv-sfe〉

1. Compute the function f on the given inputs and store
the (public) output in variable y.

2. Chose (sk, vk)
$← Gen(1k) and compute a signature

σ = Sign(y, sk).

3. Choose a uniformly random i∗ ∈ [n] and set yi∗ =
(y, σ) and for each i ∈ [n] \ {i∗}, set yi to a default
value (e.g., yj = ⊥).

4. Each pj ∈ P receives as (private) output the value
(yj , vk).

Protocol ΠOpt,f
nSFE

1. The parties use protocol Πgmw [17] to evaluate the

functionality Ff,⊥priv-sfe. If Πgmw aborts then ΠOpt,f
nSFE

also aborts’ otherwise every party pi denotes its out-
put by (yj , vk).

2. Every party broadcasts yj . If no party broadcast a
pair yj = (y, σ) where σ is a valid signature on y for
the key vk then every party aborts. Otherwise, every
party output y.

As proven in the full version of this work [15], the utility
that any adversary A accrues against ΠOpt

nSFE is

uA(Π
Opt
nSFE,A)

negl

≤ (n− 1)γ10 + γ11

n
,

11In fact, we do not need to authenticate the default value.

which is in fact optimal (also proven there).

Utility-balanced fairness. A closer look at the above re-
sults shows that an adversary who is able to corrupt parties
for free is always better off corrupting n− 1 parties. While
this is natural in the case of two parties, in the multi-party
case one might be interested in more “fine-grain” optimal-
ity notions, which are sensitive to the number of corrupted
parties. One such natural notion, which we now present, re-
quires that the allocation of utility to adversaries corrupting
different numbers of parties be tight, in the sense that the
utility of a best t-adversary—i.e., any adversary that opti-
mally attacks the protocol while corrupting up to t parties—
cannot be decreased unless the utility of a best t′-adversary
increases, for t′ 6= t.12 This leads to the notion of utility-
balanced fairness.

Definition 9. Let ~γ ∈ Γ+
fair. A multi-party protocol Π is

utility-balanced ~γ-fair (w.r.t. corruptions) if for any pro-
tocol Π′, for every (A1, . . . ,An−1) and (A′1, . . . ,A′n−1) the
following holds:

n−1∑
t=1

uA(Π,At)
negl

≤
n−1∑
t=1

uA(Π
′,A′t),

where for t = 1, . . . , n − 1, At and A′t are t-adversaries
attacking protocols Π and Π′, respectively.13

In the full version, we show that protocol ΠOpt
nSFE is in fact

utility-balanced ~γ-fair. To this end, we first prove that the
sum of the expected utilities of the different t-adversaries is

n−1∑
t=1

uA(Π
Opt
nSFE,At)

negl

≤ (n− 1)

2
(γ10 + γ11), (4)

which we then show to be tight for certain functions. In
fact, our upper bound provides a good criterion for check-
ing whether or not a protocol is utility-based ~γ-fair: if for
a protocol there are t-adversaries, 1 ≤ t ≤ n − 1, such that
the sum of their utilities non-negligibly exceeds this bound,
then the protocol is not utility-balanced ~γ-fair. We observe
that protocols that are fair according to the traditional fair-
ness notion [17] are not necessarily utility-balanced ~γ-fair—
the reason is that they “give up” completely for n/2 par-
ties if n is even. Furthermore, although the protocol ΠOpt

nSFE

presented above satisfies both utility-based notions (optimal
and utility-balanced), these two notions are in fact incom-
parable; separating examples are given in the full version.

Utility-balanced fairness as optimal fairness with cor-
ruption costs. As discussed above, the notion of utility-
balanced fairness connects the ability (or willingness) of the
adversary to corrupt parties with the utility he obtains.
Thus, a natural interpretation of utility-balanced ~γ-fairness
is as a desirable optimality notion when some information
about the cost of corrupting parties is known; for example,

12One can define an even more fine-grain notion of utility
balancing, which explicitly puts a bound on the utility of
the best t-adversary At for every t (instead of bounding the
sum). See next subsection and the full version.

13Note that we exclude from the sum the utilities of adver-
saries that do not corrupt any party (t = 0) or corrupt every
party (t = n), since by definition for every protocol these
utilities are γ01 and γ11, respectively.

it is known that certain sets of parties might be easier to cor-
rupt than others. We now show that if we associate a cost
to party corruption (as a negative utility for the adversary)
then there is a natural connection between utility-balanced
~γ-fairness and optimal ~γ-fairness. We first slightly modify
the definition of an attacker’s utility to account for corrup-
tion cost, along the lines of [14].

Specifically, in addition to the events Eij specified in Sec-
tion 3, we also define, for each subset I ⊆ [n] of parties,
the event EI that occurs when the adversary corrupts ex-
actly the parties in I. The cost of corrupting each such set
I is specified via a function C : 2P → R, where for any
I ⊆ P, C(I) describes the cost associated with corrupting
the players in I. We generally let the corruption costs C(I)
be non-negative. Thus, the adversary’s payoff is specified by
the events ~EC = (E00, E01, E10, E11, {EI}I⊆P) and by the
corresponding payoffs ~γC = (γ00, γ01, γ10, γ11, {−C(I)}I⊆P).
The expected payoff of a given simulator S (for an environ-
ment Z) is redefined as:

U
F⊥sfe,~γ

C

I (S,Z) :=
∑

i,j∈{0,1}

γij Pr[Eij]−
∑
I⊆P

C(I) Pr[EI].

(5)
We write ~γC ∈ Γ+C

fair to denote the fact that for the sub-
vector ~γ = (γ00, γ01, γ10, γ11) of ~γC , ~γ ∈ Γ+

fair. Given that the
adversary incurs a cost for corrupting parties, we can show
that protocols are ideally ~γC-fair which, roughly speaking,
means that the protocol restricts its adversary as much as a
completely fair protocol—according to the standard notion
of fairness—would. We show that utility-balanced fairness
implies an optimality (with respect to the cost function) on
ideal ~γC-fairness. (See Definition 19 in [15].) For cost
functions that only depend on the number of parties (i.e.,
C(I) = c(|I|) for c : [n]→ R), we show the following theorem
in the full version.

Theorem 10. Let ~γ = (γ00, γ01, γ10, γ11) ∈ Γ+
fair. For a

protocol Π that is utility-balanced ~γ-fair, the following two
statements hold:

1. Π is ideally ~γC-fair with respect to cost vector ~γC =
(γ00, γ01, γ10, γ11, {−C(I)}I⊆P) ∈ Γ+C

fair for the function
C(I) = c(|I|) = uA(Π,A|I|), where A|I| is the best
adversary strategy corrupting up to |I| parties.

2. The cost function C above is optimal in the sense that

there is no protocol which is ideally ~γC
′
-fair with a cost

function C′ that is strictly dominated by C (see full ver-
sion for formal definition).

5. UTILITY-BASED VS. PARTIAL FAIRNESS
A notion that is closely related to our fairness notion is

the concept of 1/p-security—also called partial fairness—
introduced by Gordon and Katz [18]. Roughly speaking,
the notion allows a “distinguishing gap” of at most 1/p (for
a polynomial p) between the real-world protocol execution
and the ideal-world evaluation of the function. Furthermore,
all statements discussed informally in this section are proven
in the full version of this work.

At a high level, 1/p-security appears to correspond to
bounding the adversary’s utility to p−1

p
·γ11+ 1

p
·γ10, since the

protocol leads to a “fair” outcome with probability 1 − 1/p
and to an “unfair” outcome with probability 1/p. This is

a better bound than proven in Theorem 3 for our “opti-
mal” protocol—which appears to be a contradiction to our
optimality result. The protocols of Gordon and Katz [18],
however, only apply to functions for which the size of ei-
ther one party’s input domain or one party’s output range
is bounded by a polynomial. Our protocols do not share this
restriction, and the impossibility result in Lemma 5 is shown
using a function which has exponential input domains and
output ranges.

A weakness of 1/p-security. In general, 1/p-security al-
lows privacy (and not only fairness) to be violated with
probability 1/p. Noticing this, Gordon and Katz [18] al-
ready suggested that one might additionally require that a
1/p-protocol be private. We point out, however, that even
protocols that are both 1/p-secure and private may have
subtle problems. Intuitively, the issue is that privacy and
correctness are considered separately, rather than jointly as
in standard simulation-based security definitions. For ex-
ample, consider the following protocol Π̃ for computing the
logical “and” of two parties’ inputs x1 and x2:

• The first message is a 0-bit sent from p2 to p1.

• If p2 sent a 1-bit instead of a 0-bit, then p1 tosses a
biased coin C with Pr [C = 1] = 1

4
, and sends its input

x1 to p2 if C = 1 (or otherwise an empty message).

• Then, p1 and p2 engage in any 1
4
-secure protocol to

compute x1 ∧ x2.

In the full version of this work, we show that this protocol
is private; this is because p2 can learn x1 even in the ideal
world (by sending a 1 to the ideal functionality). We also
show that the protocol is 1/2-secure. Yet it allows p2 to
learn x1 and simultaneously force p1 to output 0.

Analysis of the Gordon-Katz protocols using our ap-
proach. Gordon and Katz [18] propose two protocols: one
for functions that have (at least) one domain of polynomial
size, and one for functions in which (at least) one range is
polynomial size. The underlying idea of the protocols is to
reconstruct the output in multiple rounds and to provide the
actual output starting at a round chosen at random. In all
previous rounds, a random output is given. We stress that
the protocols are proven secure only with respect to static
corruptions; all the statements we make in this section are
in this setting.

The protocols described by Gordon and Katz do not re-
alize functionality Ff,⊥sfe , as the correctness of the honest
party’s output is not guaranteed. In fact, it is inherent to
their protocols that if the adversary aborts early, then the
honest party may output a random output instead of the
correct one. Hence, to formalize the guarantees achieved by
those protocols, we weaken our definition by modifying the
functionality Ff,⊥sfe to allow for a correctness error; specif-
ically, the weakened functionality allows the adversary to
replace the honest party’s output by a randomly chosen out-
put. The original protocol for functions with one polynomial
domain (see [18, Section 3.2]) achieves this functionality and
bounds the adversary’s payoff. The statements about the
protocol for functions with polynomial size range transfer
analogously.

Comparing 1/p-security with our notion. Our def-
inition as described in the previous paragraph is strictly

stronger than 1/p-security, even if the latter notion is strength-
ened by additionally requiring privacy as suggested in [18].
Indeed, for the payoff vector ~γ = (0, 0, 1, 0) a security state-

ment in our model implies 1/p-security, and protocol Π̃ de-
scribed above shows that our notion is strictly stronger.

6. ACKNOWLEDGMENTS
Jonathan Katz was supported by NSF grants #0830464,

#1111599, and #1223623. Björn Tackmann was supported
by the Swiss National Science Foundation (SNF) via the Fel-
lowship no. P2EZP2-155566 and the NSF grant CNS-1228890.
Vassilis Zikas was supported by the Swiss National Science
Foundation (SNF) via the Ambizione grant PZ00P-2142549.

7. REFERENCES
[1] Gilad Asharov, Ran Canetti, and Carmit Hazay. Towards a

game theoretic view of secure computation. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of
LNCS, pages 426–445, Heidelberg, 2011. Springer.

[2] Donald Beaver and Shafi Goldwasser. Multiparty
computation with faulty majority. In Proceedings of the
30th Symposium on Foundations of Computer Science,
pages 468–473. IEEE, 1989.

[3] Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov.
1/p-secure multiparty computation without honest
majority and the best of both worlds. In Phillip Rogaway,
editor, CRYPTO 2011, volume 6841 of LNCS, pages
277–296, Heidelberg, 2011. Springer.

[4] Manuel Blum. How to exchange (secret) keys. ACM
Transactions on Computer Science, 1:175–193, 1984.

[5] Dan Boneh and Moni Naor. Timed commitments. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS,
pages 236–254, Heidelberg, 2000. Springer.

[6] Ran Canetti. Security and composition of multiparty
cryptographic protocols. Journal of Cryptology, 13:143–202,
April 2000.

[7] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proceedings of the
42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145. IEEE, 2001.

[8] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. Cryptology ePrint
Archive, Report 2000/067, December 2005. A preliminary
version of this work appeared in [7].

[9] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor.
Adaptively secure multi-party computation. In
Twenty-Eighth Annual ACM Symposium on Theory of
Computing, pages 639–648. ACM, ACM Press, 1995.

[10] Richard E. Cleve. Limits on the security of coin flips when
half the processors are faulty. In Proceedings of the 18th
Annual ACM Symposium on Theory of Computing, pages
364–369, Berkeley, 1986. ACM.

[11] Ivan Damg̊ard. Practical and provably secure release of a
secret and exchange of signatures. Journal of Cryptology,
8(4):201–222, 1995.

[12] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas.
Efficient private matching and set intersection. In Christian
Cachin and Jan Camenisch, editors, Advances in
Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of
Cryptographic Techniques, Interlaken, Switzerland, May
2-6, 2004, Proceedings, volume 3027 of Lecture Notes in
Computer Science, pages 1–19. Springer, 2004.

[13] Juan A. Garay, David S. Johnson, Aggelos Kiayias, and
Moti Yung. Resource-based corruptions and the
combinatorics of hidden diversity. In Robert D. Kleinberg,
editor, Innovations in Theoretical Computer Science, ITCS
’13, Berkeley, CA, USA, pages 415–428. ACM, 2013.

[14] Juan A. Garay, Jonathan Katz, Ueli Maurer, Björn
Tackmann, and Vassilis Zikas. Rational protocol design:
Cryptography against incentive-driven adversaries. In 54th
Annual Symposium on Foundations of Computer Science.
IEEE, 2013.

[15] Juan A. Garay, Jonathan Katz, Björn Tackmann, and
Vassilis Zikas. How fair is your protocol? Cryptology ePrint
Archive, Report 2015/187, March 2015.

[16] Juan A. Garay, Philip MacKenzie, Manoj Prabhakaran,
and Ke Yang. Resource fairness and composability of
cryptographic protocols. In Shai Halevi and Tal Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 404–428.
Springer, 2006.

[17] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
play any mental game—A completeness theorem for
protocols with honest majority. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, pages
218–229. ACM, 1987.

[18] Dov Gordon and Jonathan Katz. Partial fairness in secure
two-party computation. In Henry Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 157–176.
Springer, 2010.

[19] Ronen Gradwohl, Salil Vadhan, and David Zuckerman.
Random selection with an adversarial majority. In
Proceedings of the 26th Annual International Conference
on Advances in Cryptology, CRYPTO’06, pages 409–426,
Berlin, Heidelberg, 2006. Springer-Verlag.

[20] Adam Groce and Jonathan Katz. Fair computation with
rational players. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 81–98. Springer, 2012.

[21] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis
Zikas. Universally composable synchronous computation. In
Amit Sahai, editor, TCC 2013, volume 7785 of LNCS,
pages 477–498, Heidelberg, 2013. Springer.

[22] Yehuda Lindell and Benny Pinkas. A proof of security of
Yao’s protocol for two-party computation. Journal of
Cryptology, 22(2):161–188, April 2009.

[23] Benny Pinkas. Fair secure two-party computation. In Eli
Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 87–105, Heidelberg, 2003. Springer.

APPENDIX
This section contains material deferred from Section 4.1.

An authenticated secret sharing scheme. The sharing
of a secret s (field element) is a pair (s1, s2) of random field
elements (in some larger field) with the property that s1 +
s2 = (s, tag(s, k1), tag(s, k2)), where k1 and k2 are MAC
keys associated with the parties p1 and p2, respectively, and
tag(x, k) denotes a MAC tag for the value x computed with
key k. We refer to the values s1 and s2 as the summands.
Each pi ∈ {p1, p2} holds his share (si, tag(si, k¬i)) along
with the MAC key ki which is used for the generation of
the MAC tags he is supposed to verify. We denote by 〈s〉 a
sharing of s and by 〈s〉i party pi’s share. The above sharing
can be reconstructed towards any of the parties pi as follows:
p¬i sends his share 〈s〉¬i = (s¬i, t¬i) to pi who, using ki,
verifies that t¬i is a valid MAC for s¬i. Subsequently, pi
reconstructs the authenticated secret s by computing s1 +
s2 := (s, t′1, t

′
2) and verifying, using key ki, that t′i is a valid

MAC for s. If any of the MAC verifications fails then pi
aborts and outputs ⊥.

	Introduction
	Preliminaries
	Utility-based Fairness and Protocol Optimality
	Utility-based Fair SFE
	The Two-Party Setting
	The Protocol (Upper Bound)
	Optimality of the Protocol (Lower Bound)
	Round Complexity of the Reconstruction Phase

	The Multi-Party Setting

	Utility-based vs. Partial Fairness
	Acknowledgments
	References

